Abstract:
The present invention pertains to a device for measuring a temperature distribution, which can measure a temperature distribution without contacting a minor sample having a three-dimensional structure. More particularly, the device for measuring the temperature distribution can measure a three-dimensional temperature distribution for a sample, wherein the temperature distribution in a depth direction (direction z) of the sample is measured by a thermo-reflectance technique using a chromatic dispersion lens, a diffraction spectrometer and an optical detection array; and the temperature distribution in parallel directions (direction x-y axes) of the sample is measured by the thermo-reflectance technique using a biaxial scanning mirror.
Abstract:
An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
Abstract:
A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
Abstract:
An infrared gas detector includes an infrared reception member, a package configured to accommodate the infrared reception member, and an optical filter. The infrared reception member includes a plurality of thermal infrared detection elements each configured to detect infrared based on heat caused by received infrared. The thermal infrared detection elements are placed side by side. The package is provided with a window opening configured to allow the infrared reception member to receive infrared. The optical filter is attached to the package so as to cover the window opening, and includes a plurality of filter elements respectively corresponding to the plurality of the thermal infrared detection elements. Each of the filter elements includes a filter substrate made of an infrared transparent material, a transmission filter configured to transmit infrared of a selected wavelength, and a cut-off filter configured to absorb infrared of a wavelength longer than the selected wavelength. The transmission filter and the cut-off filter are formed over the filter substrate. The filter substrate is thermally coupled to the package. The transmission filters of the respective filter elements are configured to transmit infrared of the different selected wavelengths.
Abstract:
An NDIR gas sensor takes advantage of a conventional packaging embodiment commonly used to house detectors of all kinds comprising a can, header and a dish sample chamber all welded together to form a single detector unit. The can forms the top, a hollowed out header body forms the middle and a custom dish sample chamber forms the bottom of a completely functioning NDIR gas sensor. Whereas the header body not only accommodates all the optoelectronic and optical parts on its top surface providing the required signal processing functions for the gas sensor, part of its body is excavated below to accommodate a custom dish sample chamber in communication with the gas outside whose concentration level is to be measured. A lens and windows are also fabricated on the top part of this header body so that infrared radiation can enter the dish sample chamber below and then be redirected back above for signal processing. To achieve this optical feat, strategic reflecting surfaces are impregnated on the top of the can housing so as to direct infrared radiation to the dish sample chamber below through a lens and then redirect the radiation above via another window for subsequent signal detection and processing.
Abstract:
A plasma processing apparatus includes a temperature measuring unit; airtightly sealed temperature measuring windows provided in a mounting table, for optically communicating to transmit a measurement beam through a top surface and a bottom surface of the mounting table; and one or more connection members for connecting the mounting table and a base plate, which is provided in a space between the mounting table and the base plate. In the plasma processing apparatus, a space above the mounting table is set to be maintained under a vacuum atmosphere, and a space between the mounting table and the base plate is set to be maintained under a normal pressure atmosphere, and each collimator is fixed to the base plate at a position corresponding to each temperature measuring window, thereby measuring a temperature of the substrate via the temperature measuring windows by the temperature measuring unit.
Abstract:
A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.
Abstract:
An infrared ray detector comprises a prism element, a condenser lens, and an infrared ray receiving unit. The prism element is configured to convert the infrared ray irradiated from a detection area of a viewing field to the infrared ray proceeding toward the condenser lens. The condenser lens is configured to concentrate the infrared ray into the infrared ray receiving unit. The infrared ray receiving unit includes a plurality of the infrared ray detection elements. The infrared ray detection elements are arranged in an alternate fashion so as to output electrical signals of positive polarity and negative polarity. Consequently, the infrared ray detector is configured to detect the infrared ray irradiated from a plurality of the detection area, and is configured to detect the infrared ray on the basis of movement of the human in the detection area.
Abstract:
A lightweight camera is provided that includes a lightweight lens system that has a reduced number of lenses. Reducing the number of lenses produces a lighter camera, but produces a distorted local image. The distorted local image is captured by the lightweight camera, and is preferably transmitted to a remote station. The remote station then performs image processing on the distorted image to remove at least some of the distortion in the image. Preferably, a Massively Parallel Richardson-Lucy (MPRL) algorithm is used to identify and remove distortion from the image. Also, motion, temperature and inter-detector difference distortion is detected and corrected.
Abstract:
A sensor for measuring a property of a chemical, the sensor including: a light source; and a mixing medium in optical communication with the light source and exposed to the chemical; wherein four wave mixing of light interacting with the mixing medium provides a signal that indicates the property.