Abstract:
An improved particle beam treatment system optionally includes exchangeable particle beam nozzles. These particle beam nozzles may be automatically moved from a storage location to a particle beam path or between particle beam paths for use in medical applications. Movement may be achieved using a conveyance, gantry, rail system, or the like. The improved particle beam treatment system optionally also includes more than two alternative particle beam paths. These alternative particle beam paths may be directed to a patient from a variety of different angles and in different planes.
Abstract:
The present invention relates to an X-ray source for emitting a characteristic X-ray and a fluorescent X-ray analyzing apparatus using the X-ray source. A secondary target is arranged in superposition on a primary target. An electron beam generated by an electron gun enters the primary target, which passes and emits a continuous X-ray. The secondary target transmits and emits a characteristic X-ray excited by the continuous X-ray emitted from the primary target. The primary target and the secondary target are superposed one on the other, so that the continuous X-ray emitted from the primary target efficiently excites the secondary target thereby to efficiently generate the characteristic X-ray.
Abstract:
A transmission type X-ray tube includes an electrode lead (4) holding a cathode filament (7) and a stem unit (1) to which a sealing member (5), an exhaust tube (2), and the like are attached by brazing, and an irradiation widow frame (8) having an X-ray irradiation window (9) attached by brazing. The other end side (52) of the sealing member (5) is attached to an open end (83) of the irradiation window frame (8) by welding. Thus, it is possible to obtain a high-quality transmission type X-ray tube having a long service life at a low cost.
Abstract:
An x-ray tube (1) irradiates an electron beam from a cathode (18) to impact a target (36) and emit x-rays. When the x-ray tube (1) operates, the magnet portion (40) is rotated every fixed time period and positioned at a prescribed rotation position. Due to the rotation of the magnet portion (40), the magnetic field formed by the permanent magnets (42) changes and the irradiation position on the target (36) of the electron beam moves. As a result, the electron beam is irradiated at a new position on the target (36) and the same amount of x-ray as the initial performance is generated.
Abstract:
An x-ray radiation source in which a focused electron beam impinges upon a target positioned in front of the focal point of the electron beam and the radiation emitted by the target travels through the aperture of an aperture diaphragm with the aperture disposed at the focal point of the electron beam.
Abstract:
For eliminating a high-tension cable in order to improve the handling, the open type X-ray generating apparatus (1) in accordance with the present invention employs a mold power unit in which a high-voltage generating part, a grid connecting line, and a filament connecting line which attain a high voltage are molded with a resin, whereas the mold power unit is secured to the proximal end side of a tubular portion (2), whereby an apparatus of a type integrated with a power supply is realized. Since the high-voltage generating part, grid connecting line, and filament connecting line are confined within the resin mold as such, the degree of freedom in structure of the high-voltage generating part and the degree of freedom in bending the lines improve remarkably.
Abstract:
A compact x-ray tube assembly comprises an evacuated chamber enclosed by a ceramic tubular envelope, an attached power supply at one end connected to an emitter inside the chamber, electrostatic means for focusing a beam of electrons on a metal foil target, an end window at the other end comprising said target, the thickness and composition of the metal foil target and the e-beam energy being selected to generate a microfocused bright beam of x rays of a preselected energy. The compact assembly is useful in a method for aligning or positioning layers used in the production of microelectronics components.
Abstract:
The electron-emissive element in an X-ray tube is constructed so as to be loop-shaped so that an electron target which is also loop-shaped can be formed on an anode. Notably for target transmission tubes having an integrated window-anode element, a substantial reduction of the window temperature can thus be achieved. Inter alia because of the lower temperature gradients, the window can be constructed to be thinner; however, its service life is substantially prolonged and the radiation efficiency of the tube is increased.
Abstract:
The invention relates to a fluorescence radiation source in which an anode which encloses a member is struck by electrons on its side which faces the member and in which the primary X-ray radiation generated in the anode generates fluorescence radiation in the member. The member is preferably arranged within an enclosing shield which keeps scattered electrons remote from the member.
Abstract:
The present disclosure involves methods and apparatus for actively controlling the charged particle density in a controlled pressure region or in the ambient atmosphere, from an accelerator capable of producing high intensity relativistic charged particle streams in a pulsed manner. The techniques are applicable to both high repetition rate applications, typical of industrial processors, electron tubes or accelerator/fusion reactor injectors, and to single pulse or low repetition rate systems. These methods utilize the self-magnetic forces of relativistic beams to accomplish controlled distribution, and avoid the complexities of electromagnetic scanners or lenses heretofore used for this purpose. Methods are also disclosed which utilize force control in partially charged neutralized beams as well as plasma conductivity control in freely drifting beam systems.