Abstract:
A Faraday sensor test system includes a Faraday sensor configured to intercept a quantity of ions incident on said Faraday sensor, a primary conductor and a test conductor coupled to said Faraday sensor, and a controller. The controller is configured to automatically provide a test current into the test conductor in response to a test condition. The controller is further configured to receive a return current from the primary conductor in response to the test current and to compare the return current to a value representative of the test current to determine a condition of a conductive path comprising the test conductor, the Faraday sensor, and the primary conductor.
Abstract:
A specimen fabrication apparatus, including: an ion beam irradiating optical system to irradiate a sample placed in a chamber, with an ion beam; a specimen holder to mount a specimen separated by the irradiation with the ion beam; a holder cassette to hold the specimen holder; a sample stage to hold the sample and the holder cassette; and a probe to move the specimen to the specimen holder, wherein the holder cassette is transferred to outside of the chamber in a condition of holding the specimen holder with the specimen mounted.
Abstract:
The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam. The position of the cut is based upon the analysis of the charged particle beam image. Ultimately, a surface exposed by the charged particle beam cut is imaged to obtain additional information about the defect.
Abstract:
A system for analyzing a semiconductor device, including: a first ion beam apparatus including: a sample stage to mount a sample substrate; a vacuum chamber in which the sample stage is placed; an ion beam irradiating optical system to irradiate the sample substrate; a specimen holder that accommodates a plurality of specimens separated from the sample substrate by the irradiation of the ion beam; and a probe to extract the separated specimen from the sample substrate, and to transfer the separated specimen to the specimen holder; a second ion beam apparatus that carries out a finishing process to the specimen; and an analyzer to analyze the finished specimen, wherein the first ion beam apparatus separates the specimen and the probe in a vacuum condition.
Abstract:
A technique for improving ion implantation throughput and dose uniformity is disclosed. In one exemplary embodiment, a method for improving ion implantation throughput and dose uniformity may comprise measuring an ion beam density distribution in an ion beam. The method may also comprise calculating an ion dose distribution across a predetermined region of a workpiece that results from a scan velocity profile, wherein the scan velocity profile comprises a first component and a second component that control a relative movement between the ion beam and the workpiece in a first direction and a second direction respectively, and wherein the ion dose distribution is based at least in part on the ion beam density distribution. The method may further comprise adjusting at least one of the first component and the second component of the scan velocity profile to achieve a desired ion dose distribution in the predetermined region of the workpiece.
Abstract:
In an ion bean acceleration system, transient electrical arc suppression and ion beam accelerator biasing circuitry. Two-terminal circuitry, connectable in series, for suppressing arcs by automatically sensing arc conditions and switch from at least a first operating state providing a relatively low resistance electrical pathway for current between source and load terminals to at least a second, relatively high resistance electrical pathway. Selection of circuit component characteristics permits controlling the delay in returning from the second state to the first state after the arc has been suppressed.
Abstract:
A generation apparatus of writing error verification data for a pattern writing apparatus includes a data extraction part configured to extract, from layout data including a figure pattern to be written, part of the layout data required for an operation of a function having a writing error occurred after starting writing by the pattern writing apparatus which performs writing on a target workpiece based on the layout data, and a verification data generation part configured to perform a merge process based on extracted part of the layout data, and to generate writing error verification data, for which the merge process has been performed, for verifying the writing error of the pattern writing apparatus.
Abstract:
An ion implanter includes an ion beam generator configured to generate an ion beam, a scanner configured to scan the ion beam in at least one direction at a scan frequency, and a controller. The controller is configured to control the scan frequency in response to an operating parameter of the ion implanter. The operating parameter is at least partially dependent on the energy of the ion beam. The scan frequency is greater than a scan frequency threshold if the energy is greater than an energy threshold, and the scan frequency is less than the scan frequency threshold if the energy is less than the energy threshold.
Abstract:
A system for analyzing a semiconductor device, including: a first specimen fabricating apparatus including: a vacuum chamber in which a sample substrate is placed, an ion beam irradiating optical system for forming a specimen on the sample substrate, a specimen holder to mount the specimen, and a probe for removing the specimen from the sample substrate; a second specimen fabricating apparatus, and an analyzer to analyze the specimen, wherein said first specimen fabrication apparatus has a function to separate the specimen mounted on the specimen holder and the probe in a vacuum condition.
Abstract:
Multi-pixel electron microbeam irradiator systems and methods are provided with particular applicability for selectively irradiating predetermined cells or cell locations. A multi-pixel electron microbeam irradiator system can include a plurality of individually addressable electron field emitters sealed in a vacuum. The multi-pixel electron microbeam irradiator system can include an anode comprising one or more electron permeable portions corresponding to the plurality of electron field emitters. Further, the multi-pixel electron microbeam irradiator system can include a controller operable to individually control electron extraction from each of the electron field emitters for selectively irradiating predetermined locations such as cells or cell locations.