Abstract:
An electron microscope includes a charged particle beam generator, a detector, a film and a bearing unit. The charged particle beam generator generates a first charged particle beam to bomb an object. The detector detects a second charged particle from the object to form an image. The film disposes on downstream of charged particle beam generator and has a first surface and a second surface. A space between charged particle beam generator and the first surface of film is a vacuum environment. The bearing unit disposes at a side of second surface of film and has a bearing surface and a back surface. The object disposes on the bearing surface of the bearing unit and a distance between an analyzed surface of the object and the film is less than a predetermined spacing. A liquid space exists between the analyzed surface and the film to be filled a liquid.
Abstract:
When injection of electrons into a sample supporting member causes a potential gradient between an insulative thin film and a conductive thin film at a site of electron beam injection, the potential barrier of the surface of the insulative thin film becomes thin, and an electron emission phenomenon is caused by tunnel effects. Secondary electrons caused in the insulative thin film tunnel to the conductive thin film along the potential gradient. The secondary electrons, having tunneled, reach a sample while diffusing in the conductive thin film. In the case where the sample is a sample with a high electron transmittance, such as a biological sample, the secondary electrons also tunnel through the interior of the sample. The secondary electrons are detected to acquire an SEM image in which the inner structure of the sample is reflected.
Abstract:
Provided is an observation method by an electron microscope, in which a biological sample can be observed as it is alive and a situation that the biological sample is moving can be observed using an electron microscope, and a composition for evaporation suppression under vacuum, a scanning electron microscope, and a transmission electron microscope used in the method.The sample observation method by an electron microscope according to the invention includes applying a composition for evaporation suppression containing at least one kind selected from an amphiphilic compound, oils and fats, and an ionic liquid to the surface of a sample to form a thin film, and covering the sample with the thin film, and displaying an electron microscopic image of the sample, which is covered with the thin film and accommodated in a sample chamber under vacuum, on a display device.
Abstract:
A charged particle beam device provided with: a charged particle optical lens column generating a primary charged particle beam; a housing which has its inside evacuated by a vacuum pump; a first diaphragm that forms a part of the housing and able to keep an airtight state of the interior space of the housing; and a second diaphragm disposed between the first diaphragm and the sample, wherein a primary charged particle beam generated by the charged particle optical lens column is transmitted by or passes through the first diaphragm and the second diaphragm, and then is irradiated, on the sample that is in contact with the second diaphragm.
Abstract:
An electron microscopy sample support comprises: a support member; and a metal foil comprising a porous region. The support member is configured to give structural stability to the metal foil, and the porous region of the metal foil is configured to receive an electron microscopy sample. Also provided is a method of manufacturing such an electron microscopy sample support, a method of imaging using such an electron microscopy sample support and an apparatus operable to perform such imaging. An electron microscopy specimen support in accordance with aspects and embodiments may reduce particle motion and/or sample char ging in electron microscopy, and thus improve information content available from electron micrographs. Appropriately designed and constructed supports may lead to an increased resolution per particle and increased accuracy of angular assignments in 3D reconstructions of for example, biological specimens. This may enable the determination of structures of smaller and more difficult proteins than was previously possible using EM techniques.
Abstract:
This device is for holding samples during their preparation prior to imaging in the electron microscope. The design means it can be transferred between the light and electron microscopes as well as trimming devices used to prepare the final sample. It can also be used at both ambient and cryo temperatures down to −110° C. The device consists of a base plate that can be held on the stage of a light microscope. It has an aperture through which transmitted light can pass. In this aperture is a clamp which holds a small transparent plastic sphere; the sample sphere. The sample for preparation is bonded to this sphere. The shape of this clamp and sphere means that the sample can be held at any angle to allow for optimal imaging in any light microscope and in the trimming devices, including the ultramicrotome. Once trimmed, the entire universal sample holder can then be transferred into the scanning electron microscope, or held in the ultramicrotome for thin sectioning.
Abstract:
A particle beam system is offered which can prevent contamination of the inside of the objective lens, the objective lens being located at the front end of the optical column. The particle beam system has an optical column equipped with a particle beam source for emitting a particle beam and a beam passage pipe through which the beam passes. The system further includes a vacuum chamber connected with the front end portion of the column. The beam passed through the pipe is released from the front end of the column. An inner pipe is detachably disposed inside the beam passage pipe located at the front-end side of the column.
Abstract:
A method for using a reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. The method may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, the method provides a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
Abstract:
An object of the present invention is to provide a medium; a specimen; a method for preparing the specimen; a method for observing the specimen; a sample cell; and an electron microscope capable of easily solving the problem of charge-up and further capable of observing a real shape or the like of a sample with a SEM, a TEM or the like. For the purpose of achieving the above-described object, the present invention uses an electrical conductivity-imparting liquid medium, for use in a microscope, which includes an ionic liquid as an essential component thereof and is impregnated into the entirety of a SEM or TEM sample or applied to the observation surface of a SEM or TEM sample to impart electrical conductivity at least to the observation surface of the sample. According to the present invention, the charge built up on the sample surface can be released simply by impregnating or coating the sample with the ionic liquid, and hence the problem of charge-up can be easily solved. Further, even when a sample impregnated or coated with the ionic liquid is placed under vacuum, the ionic liquid is not evaporated from the sample, and hence a biological sample can be observed as it is in an original shape.
Abstract:
An electrochemical cell apparatus is disclosed where the cell has a chamber for containing an electrolyte. The chamber is situated between a bottom and a top substrate. One or more bottom windows are in the bottom substrate and one or more top windows are in the top substrate. Each window has a window cover facing the chamber. The top window and bottom window each have a portion in alignment so that an electron beam passes through both respective portions. A spacer is deposited between the top and bottom substrate and forming walls surrounding the chamber. Two or more electrodes, each having an interior portion that is within the chamber and electrically continuous with an exterior portion external to the chamber, are located on the chamber side of the bottom substrate.