Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.
Abstract:
In an illumination device, a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. An image reading device and an information processing apparatus can also be equipped with the above-mentioned illumination device.
Abstract:
A method for automatically configuring terminal equipment improves the performance of configuring and managing the terminal equipment. The method includes: after being powered on/reset, the terminal equipment reporting the current configuration information to the terminal management unit; the terminal management unit determining whether the configuration information reported by the terminal equipment is the same as the configuration information for the terminal equipment stored in the terminal management unit, if it is the same, terminating the current process, otherwise, transmitting the configuration information for the terminal equipment in the terminal management unit to the terminal equipment; the terminal equipment hence updating its own configuration information according to the received configuration information.
Abstract:
A light emitting unit comprises a light emitting element, a light emitting element substrate for mounting the light emitting element, a light emitting element substrate frame member provided with a window for exposing the light emitting element, and an electrode for supplying electricity to the light emitting element, wherein the light emitting element substrate is a metal and the light emitting element is mounted directly on the light emitting element substrate. The light emitting unit is also characterized in that the light emitting element substrate is a metal, a metal oxide film is provided on the light emitting element substrate, and the light emitting element is mounted on the electrode formed on the metal oxide film.
Abstract:
A focus adjusting device (50) for an image sensor (1) is provided for ensuring precise focusing of the image sensor. The focus adjusting device includes a contact element (51) in direct contact with the bottom of a scanner cover plate, a focus varying element (53) engaging with the contact element, and a focus fine adjusting element (55) movably mounted on a housing of the image sensor. The focus varying element and the contact element are driven to correspondingly move vertically together with the vertical movement of the focus fine adjusting element, whereby the distance between an upper surface of the housing and the bottom of the cover plate is thus changed for precise focusing.
Abstract:
An image reading apparatus detecting scratch and dirt information of a film document without the need for complex structures and complex control in the image reading apparatus. The apparatus can read a transmissive original document and/or a reflective original document. The apparatus includes a first light source that illuminates the transmissive original document, a second light source that illuminates one of the reflective original document and the transmissive original document, an image sensor that generates electronic image data, a detector unit that detects non-image information from the image data, and a correction unit that corrects the image data, based on the non-image information detected by the detector unit.
Abstract:
A method and circuitry for implementing digital multi-channel demodulation circuits. More particularly, embodiments of the present invention provide a digital multi-channel demodulator circuit. The demodulator includes a frequency-block down-converter that receives a multi-channel analog RF signal and shifts the multi-channel analog RF signal to a lower frequency band. An ADC receives the multi-channel analog RF signal from the frequency-block down-converter and converts the multi-channel analog RF signal to a multi-channel digital RF signal. A digital channel demultiplexer receives the multi-channel digital RF signal from the ADC and demultiplexes the multi-channel digital RF signal into separate digital RF channels.
Abstract:
An image reading device includes: a first light source that irradiates light on a first side of an object; a memory that stores a plurality of parameters for controlling an intensity of the light emitting devices, each of the plurality of parameters corresponding to one of a plurality of groups; a controller that controls an intensity of the light emitting devices in response to one of the plurality of parameters stored in the memory; a first image reading unit that reads reflected light from the first side and generates monochrome image data on the basis of the read reflected light; and a second image reading unit that reads reflected light from the second side and generates monochrome image data on the basis of the read reflected light.
Abstract:
An image sensor module includes a first substrate, a second substrate, a plurality of light receiving elements mounted on the first substrate, a light source mounted on the second substrate, and a light guide for emitting light from the light source as linear light extending in the primary scanning direction. The light receiving elements are aligned in the primary scanning direction. The second substrate is arranged perpendicularly to the primary scanning direction. The light source includes an LED chip mounted on the second substrate.
Abstract:
A connection device capable of converting a pixel clock to a character clock comprises a pixel generator, a frequency divider, and a logic unit. The pixel generator generates a pixel clock having a number of cycles that is not an integer multiple of a first number during a predetermined interval. The frequency divider connected to the pixel clock generator generates a character clock according to the pixel clock. The logic unit connected to the pixel clock generator and the frequency divider is used for controlling the frequency divider to generate the character clock by dividing the number of cycles of the pixel clock during part of the predetermined interval by the first number and by dividing the number of cycles of the pixel clock during the remaining part of the predetermined interval by a second number.