Abstract:
An inverter gate board divided into a low-voltage region and a high-voltage region includes a plurality of drive circuits surface-mounted between the low-voltage region and the high-voltage region, each having a single main power source (SMPS) controller, and a plurality of transformers surface-mounted between the low-voltage region and the high-voltage region so as to supply a transformed voltage to each of the plurality of drive circuits, respectively.
Abstract:
Methods and structures are provided for implementing feed-through and domain isolation using ferrite and containment barriers. A vertical isolator is provided between a first domain and a second domain on a printed circuit board with signals passing between the first domain and the second domain. The vertical isolator is placed over a domain separation gap between the first and second domains in the printed circuit board, the vertical isolator having a vertical isolation barrier between a first vertical plate coupled to the first domain and a second vertical plate coupled to the second domain. The vertical isolation barrier is formed of a unitary ferrite block or a non-conductive magnetic absorber material. A plurality of capacitance feed-through plates and a dielectric material are provided within the vertical isolator.
Abstract:
This printed circuit board (12) comprising: a first portion (20) having first electronic components (22) of which the earth electrode is on a first voltage source (14); a second portion (24) having second electronic components (26) of which the earth electrode is on a second voltage source (16); a switched-mode power supply circuit (34) of which one input is connected to the first portion (20) and of which at least one output is connected to the second portion (24), is characterized in that it comprises modification means (36) for modifying a switching frequency of the switched-mode power supply circuit (34) depending on data values (32) to be transmitted between the first portion (20) and the second portion (24), the said data being able to take at least two distinct values.
Abstract:
A heatsink-less electronic unit includes a metal coreless electronic substrate, a heatsink-less microcomputer and various semiconductor relays. The heatsink-less microcomputer and the various semiconductor relays are mounted on the metal coreless electronic substrate. The heatsink-less microcomputer is arranged on the metal coreless electronic substrate. Among from the various semiconductor relays, one which may reach highest temperature is separated at a longest distance from a location where the heatsink-less microcomputer is arranged, and the various semiconductor relays are arranged separately from one another.
Abstract:
A portable electronic device packaged into a System-in-Package assembly is disclosed. The portable electronic device can include a substrate and a plurality of components mounted on the substrate and included in one or more subsystems. Interference between subsystems or from external sources can be reduced or eliminated by disposing an insulating layer over the components, forming narrow trenches between subsystems, and depositing one or more layers of a multi-layer thin film stack on the insulating layer and filling the trenches. In some examples, the multi-layer thin film stack can include an adhesion layer, a shielding layer, a protection layer, and a cosmetic layer. In some examples, the multi-layer thin film stack can include multi-functional layers such as a protection and cosmetic layer.
Abstract:
A component mounting system makes a mounting head to which a component holder is attached perform component mounting operation including upward and downward movement operation with respect to a board and mounts a component on the board. A mounting apparatus repeats reciprocating mounting operations in which the component holder is moved in a mounting order relative to a reference line extending in a first direction being the board conveyance direction such that that the component holder is advanced over the board in a second direction orthogonal to the first direction and then a held high-height component is mounted and thereafter the component holder is retracted from the board in the second direction. The mounting order is set in order in which a mounting coordinate of the high-height component is larger in the second direction relative to the reference line.
Abstract:
A multilayer wiring board with built-in electronic components includes a substrate including an insulating material and having multiple opening portions, a first conductor layer formed on a surface of the substrate and having an opening portion such that the substrate has the opening portions inside the opening portion of the first conductor layer, multiple electronic components positioned in the opening portions of the substrate, and an insulating layer formed on the substrate such that the insulating layer is formed on the electronic components and on the first conductor layer. The opening portions are formed in the substrate such that the opening portions include two opening portions and that the substrate has a partition wall formed between the two opening portions.
Abstract:
A circuit module includes a circuit substrate, a mount component, a sealing body, and a shield. The circuit substrate includes a mount surface. The mount component is mounted on the mount surface. The sealing body is formed on the mount surface, covers the mount component and has a trench formed from a main surface of the sealing body to the mount surface. The trench includes side walls configured of a first side wall at a mount surface side and a second side wall at a main surface side. A straight line connecting the first point and the second point has a second slope gentler than the first slope against the mount surface. The shield covers the sealing body and has an inner shield section formed within the trench and an outer shield section disposed on the main surface and the inner shield.
Abstract:
A wiring board has a first wiring board having a first solder-resist layer, a second wiring board connected to the first wiring board and positioned in a first opening portion formed in the first solder-resist layer of the first wiring board, and a third wiring board connected to the first wiring board and positioned in a second opening portion formed in the first solder-resist layer of the first wiring board such that the second wiring board and the third wiring board are on the same side of the first wiring board. The first opening portion of the first wiring board and the second opening portion of the first wiring board form either a common opening portion accommodating the second and third wiring boards in the first solder-resist layer or separate opening portions separately accommodating the second wiring board and the third wiring board in the first solder-resist layer.
Abstract:
According to one embodiment, an AC-DC converter includes a first printed wiring board, a planar transformer, a plurality of primary members, and a plurality of secondary members. The planar transformer has a primary coil, a secondary coil, a second printed wiring board and a core. The primary members are mounted on the first printed wiring board, and are electrically connected to the primary coil. The secondary members are mounted on the second printed wiring board, and are electrically connected to the secondary coil.