Vacuum pressure transformation vessel and method of use

    公开(公告)号:US11180422B2

    公开(公告)日:2021-11-23

    申请号:US16167748

    申请日:2018-10-23

    Abstract: A method of forming a ceramic-metal composite part is described herein. The method includes maintaining molten metal in an interior of a housing in a liquefied state, the interior including a first chamber, a second chamber, and a port defined therebetween. The method further includes sealing the port such that the molten metal in the first chamber is maintained at a first liquid level, suspending a part at a height within the first chamber above the first liquid level, forming a pressure differential between the first chamber and the second chamber, unsealing the port such that molten metal from the second chamber flows into the first chamber, and resealing the port when the molten metal in the first chamber reaches a second liquid level such that the ceramic part is submerged in the molten metal.

    Catalytic Partial Oxidation of Methane

    公开(公告)号:US20210331992A1

    公开(公告)日:2021-10-28

    申请号:US17236496

    申请日:2021-04-21

    Abstract: Systems and methods are provided for direct conversion of methane and/or ethane to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are supercritical for the solvent while having a temperature of 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of alkane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.

    Method to produce light olefins from crude oil

    公开(公告)号:US11149213B2

    公开(公告)日:2021-10-19

    申请号:US16729136

    申请日:2019-12-27

    Abstract: Embodiments of the disclosure provide a system and method for producing light olefins from a crude oil. A crude oil feed is introduced to a crude distillation unit to produce a distillate fraction and a residue fraction. The distillate fraction is introduced to a non-catalytic steam cracker to produce a light olefin fraction and a pyrolysis oil fraction. The residue fraction is introduced to a supercritical water reactor to produce an effluent stream. The effluent stream is introduced to a flash separator to produce a gas phase fraction and a liquid phase fraction. The gas phase fraction is introduced to a catalytic steam cracker to produce a light olefin fraction and a pyrolysis oil fraction. Optionally, the residue fraction is introduced to a vacuum distillation unit to produce a light vacuum gasoil fraction, a heavy vacuum gasoil fraction, and a vacuum residue fraction. The vacuum residue fraction is introduced to a solvent deasphalting unit to produce a deasphalted oil and a pitch fraction. The deasphalted oil fraction, optionally combined with the heavy vacuum gasoil fraction, can be introduced to the supercritical water reactor in lieu of the residue fraction.

    Horizontal self-balancing supercritical reaction apparatus

    公开(公告)号:US11136252B2

    公开(公告)日:2021-10-05

    申请号:US16469824

    申请日:2018-11-20

    Inventor: Dandan Wu

    Abstract: A horizontal self-balancing supercritical reaction apparatus, comprising a pressure vessel, a high pressure air compression apparatus, and at least one reactor arranged within the pressure vessel. The reactor is internally provided with front and rear pistons, two ends of the reactor are sealed by the reactor front piston and the reactor rear piston, a pressure medium is filled between the reactor front piston and an inner wall of the pressure vessel, the reactor rear piston is connected to a rear piston driving motor by a rear piston push rod, the reactor is provided with a water inlet and a water/air outlet which are controlled by valves, the reactor is internally provided with a heating apparatus, and the high pressure air compression apparatus is connected to the inside of the reactor. The present invention utilises a pressure self-balancing system, which significantly improves the stress characteristics of the reactor.

    SUPERCRITICAL WATER AND AMMONIA OXIDATION SYSTEM AND PROCESS

    公开(公告)号:US20210229054A1

    公开(公告)日:2021-07-29

    申请号:US16750827

    申请日:2020-01-23

    Abstract: The present application provides systems and methods for upgrading an oil stream. The system includes a reactor, a phase separator, an expansion device, a cooling unit, and two separation units. The reactor receives the oil stream, ammonia, and supercritical water. The supercritical water upgrades the oil stream, and the ammonia reacts with sulfur initially present in the oil stream to produce ammonia-sulfur compounds. The phase separator receives a mixture stream comprising the upgraded oil stream, supercritical water, and the ammonia-sulfur compounds, and separates out non-dissolved components. The expansion device reduces the pressure of the mixture stream below a water critical pressure. The cooling unit reduces the temperature of the mixture stream. A first separation unit separates the mixture stream it into a hydrocarbon-rich gaseous phase, a water stream containing ammonia-sulfur compounds, and a treated oil stream. A second separation unit separates the ammonia-sulfur compounds from the water stream.

    Apparatus for dispersing a gas, for example carbon dioxide, in at least one reactive resin

    公开(公告)号:US11034812B2

    公开(公告)日:2021-06-15

    申请号:US16019929

    申请日:2018-06-27

    Applicant: AFROS S.P.A.

    Abstract: The invention concerns an apparatus (1) for the dispersion of an expansion gas even in supercritical conditions, e.g. carbon dioxide, in a reactive resin, of the kind in which a reaction chamber having an input (27) for gas and an input (37) for resin is provided. Advantageously, the chamber is a dispersion and containment chamber made into a casing (2) of predetermined high resistance susceptible to sustain high pressure and is divided into two sections (6,7) by a head (14) of a dispersion and mixing cylinder-piston group (4) in fluid communication between themselves by means of at least one pouring passage (31, 36, 32, 39) provided with a static mixer (38), motor means (3) being provided for piston (34) control of said mixing cylinder-piston group (4). The invention also concerns a process for the formation of a polyurethane foam starting with the dispersion of carbon dioxide, even supercritical, in a reactive resin in which at least one initial dispersion and mixing controlled phase of the two components is provided in a dispersion and containment chamber under pressure divided into two sections (6,7) by a head (14) of a cylinder-piston mixing group (4) in fluid communication between themselves by means of at least one pouring passage (31, 36, 32, 39) provided with a static mixer (38) and in which adduction, dispersion and mixing occurs under high pressure (at least greater than 75 bar).

Patent Agency Ranking