Abstract:
The disclosure includes an outer electrode and an inner electrode. The outer electrode defines an inner volume and is configured to receive injected electrons through at least one aperture. The inner electrode positioned in the inner volume. The outer electrode and inner electrode are configured to confine the received electrons in orbits around the inner electrode in response to an electric potential between the outer electrode and the inner electrode. The apparatus does not include a component configured to generate an electron-confining magnetic field.
Abstract:
A sputter ion pump including an anode assembly comprising a plurality of hollow anode cells and cathode surfaces having open spirals disposed at each end of said anode cells.
Abstract:
An exhaust apparatus and a high vacuum pumping unit including such high vacuum device and an auxiliary vacuum pump are disclosed, wherein a high vacuum is achieved in a vacuum vessel such that the gas molecules within the vacuum vessel are ionized and accelerated to be exhausted and, further, in the high vacuum pumping unit, those gas molecules diffused back or desorbed from the vacuum pump are ionized and accelerated to be returned to the vacuum pump.
Abstract:
An exhaust apparatus and a high vacuum pumping unit including such high vacuum device and an auxiliary vacuum pump are disclosed, wherein a high vacuum is achieved in a vacuum vessel such that the gas molecules within the vacuum vessel are ionized and accelerated to be exhausted and, further, in the high vacuum pumping unit, those gas molecules diffused back or desorbed from the vacuum pump are ionized and accelerated to be returned to the vacuum pump.
Abstract:
An exhaust apparatus and a high vacuum pumping unit including a high vacuum device and an auxiliary vacuum pump are disclosed, wherein a high vacuum is achieved in a vacuum vessel such that the gas molecules within the vacuum vessel are ionized and accelerated to be exhausted. In the high vacuum pumping unit, those gas molecules are diffused back or released from the vacuum pump are ionized and accelerated to be returned to the vacuum pump.
Abstract:
Provided herein are high energy ion beam generator systems and methods that provide low cost, high performance, robust, consistent, uniform, low gas consumption and high current/high-moderate voltage generation of neutrons and protons. Such systems and methods find use for the commercial-scale generation of neutrons and protons for a wide variety of research, medical, security, and industrial processes.
Abstract:
Provided herein are high energy ion beam generator systems and methods that provide low cost, high performance, robust, consistent, uniform, low gas consumption and high current/high-moderate voltage generation of neutrons and protons. Such systems and methods find use for the commercial-scale generation of neutrons and protons for a wide variety of research, medical, security, and industrial processes.
Abstract:
Provided herein are high energy ion beam generator systems and methods that provide low cost, high performance, robust, consistent, uniform, low gas consumption and high current/high-moderate voltage generation of neutrons and protons. Such systems and methods find use for the commercial-scale generation of neutrons and protons for a wide variety of research, medical, security, and industrial processes.