Abstract:
This invention relates to Lithium Plasma discharge sources, and in particular to methods of making and producing pulsed and continuous discharge sources for plasma soft-x-ray or EUV projection lithography. Specifically, novel configurations, metal and ceramic material combinations and efficient wavelengths over and including 11.4 nm are disclosed for EUV lithium plasma discharge lamps.
Abstract:
A luminosity control system (10) for a fluorescent lamp (12) that has a glass enclosure (18) and a pair of lead wires (14) at each end of the glass enclosure is provided. A filament (16) is electrically coupled to each pair of lead wires. An amalgam (22) is located adjacent each filament. The amalgam releases mercury into the glass enclosure upon activation of the fluorescent lamp. A wrapped wire heater (24) is in thermal contact with a first portion of the exterior surface of the glass enclosure. The heater and a thermoelectric cooler (36) raise the temperature of the fluorescent lamp to a level above the temperature at which the fluorescent lamp produces maximum visible light as determined by mercury pressure within the glass enclosure while the amalgam releases mercury into the fluorescent lamp. Thereafter, the thermoelectric cooler (36) maintains a portion of the glass enclosure at this temperature.
Abstract:
A mercury-dispensing device is disclosed that includes a mercury dispenser having the formula Ti.sub.x Zr.sub.y Hg.sub.z in which x and y are between 0 and 13, inclusive, the quantity x+y is between 3 and 13, inclusive, and z is 1 or 2; and a promoter that comprises copper, silicon and possibly a third metal selected among the transition elements. A getter material selected among titanium, zirconium, tantalum, niobium, vanadium and mixtures thereof, and alloys of these metals with nickel, iron or aluminum can be included in the device. The mercury dispenser, promoter and optional getter material are provided preferably in the form of powders compressed as a pellet, or contained in a ring-shaped metallic support or rolled on the surfaces of a metallic strip. Also disclosed is a process for introducing mercury into electron tubes by making use of the above-mentioned mercury-dispensing devices.
Abstract:
An electrodeless fluorescent lamp comprises a discharge vessel (10) having a re-entrant portion (11) for housing a solenoid (12) for initiating a discharge in the vessel by means of an RF electromagnetic field. A primary amalgam (18) for releasing mercury vapor is placed at the tip of an exhaust tube (17) where the primary amalgam can be maintained at a suitable temperature for controlling the mercury vapor pressure. The primary amalgam does not provide rapid run-up of light output. To provide rapid run-up of light output a pied of indium (20,30) is placed on the re-entrant at a position where it is rapidly heated by the discharge. The indium may be coated with the layers of a coating including phosphor.
Abstract:
Apparatus for providing radiation includes an envelope and a cathode arrangement disposed within the envelope. The cathode arrangement includes an element for establishing an electrical contact. A dispenser is also disposed within the envelope. The dispenser carries mercury or a mercury alloy. A support element supports the dispenser. The support element extends from the dispenser through the envelope to provide an independent electrical contact for the dispenser.
Abstract:
A low-pressure mercury vapor discharge lamp according to the invention is provided with a discharge vessel (10) which encloses a discharge space (11) containing mercury and a rare gas in a gaslight manner. The discharge vessel (10) has a light-transmitting tubular portion (12) and a first and a second end portion (13A, 13B). Current supply conductors (20A, 20A'; 20B, 20B') issue through each end portion (13A, 13B) to respective electrodes (21A, 21B) arranged in the discharge space (11). The lamp is further provided with a main amalgam (30) for stabilizing the mercury vapour pressure in the discharge space (11) during normal operation, and with an auxiliary amalgam (31A, 31B) for quickly releasing mercury into the discharge space (11) after switching-on of the lamp. In an equilibrium state at room temperature (25.degree. C.), the mass (m.sub.Hg in mg) of the quantity of mercury absorbed in auxiliary amalgam (31A, 31B) is at most 20 times the mercury vapour pressure (P.sub.E in Pa) prevalent in the discharge space (11) in the equilibrium state. Only comparatively small brightness differences between lamp zones occur in the lamp according to the invention after switching-on.
Abstract:
A fluorescent lamp is disclosed containing a deposit of a dried metal hydride-containing paste. The dried metal hydride-containing paste has a decomposition temperature higher than the temperature present during normal lamp operation. At the end of the lamp life, an increase in lamp temperature decomposes the metal hydride-containing paste and releases hydrogen within the lamp. The presence of hydrogen causes the lamp to extinguish passively without significant end heating or glass cracking.
Abstract:
A low pressure mercury discharge lamp includes a sealed envelope defining a discharge space, an electrode disposed at one end of the envelope, mercury vapor sealed in the discharge space, and a starting flag. The starting flag includes a layer of bonded molecular sieve particles adhered to a metal foil.
Abstract:
A mercury-dispensing combination suitable to release an amount of mercury higher than 60% during the activation step, even after partial oxidation, includes a mercury-dispensing intermetallic compound A with Hg and a second metal selected among Ti, Zr and mixtures thereof, as well as a promoting alloy or intermetallic compound B including Cu and a second metal selected among Sn, In or Ag or combinations thereof. There is also disclosed a mercury-dispensing device containing a combination of materials A and B, in addition to a process for introducing mercury into electron tubes consisting in the introduction of one of said devices inside the open tube and then heating thereof at a temperature between 550.degree. and 900.degree. C. after the tube sealing in order to get Hg free.
Abstract:
A mercury vapor discharge lamp such as a negative glow discharge lamp includes a light-transmitting envelope containing a noble gas fill material. An anode electrode and a cathode electrode are spacedly located within the envelope. An amalgam-forming material for regulating the mercury vapor pressure of the lamp is disposed within the envelope. In order to increase the mercury vapor pressure and consequently the light output of the lamp at low ambient temperatures, a heating element is disposed within the envelope and in close thermal proximity to the amalgam-forming material. A thermostatic switch coupled to the heating element is activated when the temperature adjacent the amalgam-forming material is below a predetermined temperature.