Abstract:
A gas discharge device includes a thin glass tube filled with a discharge gas; a pair of first and second long electrodes extending toward either side along a longitudinal direction with a discharge gap interposed therebetween are provided outside of a back side flat surface of a thin glass tube; and a ultraviolet phosphor layer formed on an inner surface at the back side flat surface, the thin glass tube filled with a discharge gas having a front side flat surface and the back side flat surface facing each other on a transverse section, wherein, starting with trigger discharge that is initially generated in the discharge gap as a result of a voltage increase when a voltage with a sine waveform or an inclined waveform is applied between both electrodes, the discharge gradually extends so as to move in the longitudinal direction of the electrodes. Ultraviolet light having high luminous efficiency and emission intensity is obtained from a front side surface of the thin glass tube by driving the device with a sine-wave AC voltage.
Abstract:
A light emitting device fabrication method. The fabrication method of the light emitting device comprises providing a light emitting semiconductor device; positioning a plurality of luminescent particles at the optical path of the light emitting semiconductor device; and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles, than the luminescent particles is coagulated to a luminescent powder layer by the molecular attraction.
Abstract:
An image forming apparatus in which a first substrate provided with an electron-emitting device and an image displaying member which electrons emitted from the electron-emitting device irradiate are arranged to be opposed is provided with a deflecting means deflecting the electrons emitted from the electron-emitting device and a trapping unit trapping an inert gas ionized by the electrons. Thereby, the damages of the electron-emitting device by the inert gas are prevented, and the life of an image display apparatus is aimed to be elongated.
Abstract:
A planar fluorescent and electroluminescent lamp having two pairs of electrodes. Planar electrodes on an outer surface of the lamp create a plasma arc by capacitive coupling. The planar electrodes also cause embedded phosphor to emit light on the electroluminescent phenomena. In one embodiment, a second chamber is on top of the first chamber and light passes from a primary chamber through the second chamber, and is emitted by the lamp.
Abstract:
A beam mode lamp has two discharge electrodes which alternately function as anode and cathode. One or more modifying electrodes are located between the discharge electrodes. Each modifying electrode is kept equal to or negative with respect to the cathode, raising the operating voltage of the lamp from a normal 20 volts to line voltage.
Abstract:
The lamp shown herein is a beam mode fluorescent lamp for general lighting applications. The lamp comprises a light transmitting envelope, having a phosphor coating on its inner surface, the envelope encloses a thermionic cathode having a number of segments for emitting electrons, a plurality of anodes for accelerating the electrons and forming a corresponding number of electron beams, and a fill material, such as mercury, which emits ultraviolet radiation upon excitation. The multi-electrode array configuration provides an extended region of electron beam excitation and thereby more visible light. A single power source and pair of connecting conductors perform both cathode heating current and electrode potential difference functions. In addition, this configuration provides for a greater and more complete discharge of the volume within the envelope than single electrode elements. The present invention permits a higher operating voltage, lower power density and a lower operating temperature for the lamp.
Abstract:
The lamp shown herein is a beam mode fluorescent lamp for general lighting applications. The lamp comprises a light transmitting envelope, having a phosphor coating on its inner surface, enclosing a pair of thermionic electrodes and a fill material, such as mercury, which emits ultraviolet radiation upon excitation. During application of the first polarity of an AC signal, one electrode acts as a cathode and the other electrode functions as an anode. During the other AC polarity, the electrodes reverse their functions. This invention reduces the requirement for input power to a beam mode discharge lamp without adversely affecting luminous output. This lamp substantially eliminates wasted electron bombardment energy to the anode by use of this energy to help heat the cathode for the next half of the AC cycle. This lamp employs a single power source and may be used in various pre-heat or rapid start configurations.
Abstract:
An improved lighting system (10) which in the preferred embodiment includes a cathode (12) having an external surface (34) being coated with a cathode outside film (40) for emitting electrons therefrom. A first anode (14) extends internal to the cathode (12) for heating the cathode (12) to thereby emit electrons from the external surface (34). A second anode (16) is positionally located external to the enclosed cathode (12) for accelerating the electrons emitted from the cathode external surface (34). A bulb member (18) encompasses the cathode (12), the first anode (14), and the second anode (16) in a hermetic type seal. The bulb member (18) has a predetermined gas composition contained therein with the gas composition atoms being ionized by the cathode emitted electrons. The gas composition ionized atoms radiate in the ultraviolet bandwidth of the electromagnetic spectrum. The bulb member (18) is coated with a fluorescent material (20) for intercepting the ultraviolet energy responsive to the ionization of the gas composition atoms. The fluorescent material (20) radiates in the visible bandwidth of the electromagnetic spectrum to give a visible light output.