Abstract:
The invention provides spectroscopic systems and spectrometers employing an optical interference filter module having a plurality of bandpass regions. In certain embodiments, the systems include a mechanism for wavelength tuning/scanning and wavelength band decoding based on an angular motion of one or more filters. A spectral processing algorithm separates the multiplexed wavelength-scanned bandpass regions and quantifies the concentrations of the analyzed chemical and/or biological species. The spectroscopic system allows for compact, multi-compound analysis, employing a single-element detector for maximum performance-to-cost ratio. The spectroscopic system also allows for high-sensitivity measurement and robust interference compensation.
Abstract:
Obtaining two spectra from the same sample under two different conditions at about the same time for comparison, where at least one of the spectra measures magnitudes of electromagnetic radiation on at least four different ranges or weightings of wavelengths or frequencies. Classifying a sample using these spectra obtained by a user, and using spectra obtained from different samples by different users to identify the sample. Computing correlations between data related to food and ingredient consumption by one or more users over time, and data related to passive personal log data, user entered feedback, user interaction data or personal information related to those users, and detecting: foods or ingredients to which a user may be allergic or intolerant; a possible medical condition of a user; a possible link between food and ingredient consumption and a medical or health condition; or a similarity between at least two such users.
Abstract:
There is provided a high-accuracy automatic analysis device achieving both of measurement in a wide concentration range and high sensitivity at a low concentration. The signals of a plurality of wavelengths λ1 to λ12 where the sensitivity of light absorption caused by fine particles is high from a light source 40 are converted to absorbances by a spectroscopic optical system (detector) 41. The absorbances are converted to a secondary parameter from in which a noise component is cancelled by using a previously-defined conversion table 54, so that a concentration of a measured material (predetermined component) is calculated by an operation unit (calculating means) 53 based on the secondary parameter. Thus, analysis being resistant to the noise even at the low concentration can be achieved in a range up to a high concentration.
Abstract:
A spectroscopic method for spectroscopic detection and identification of bacteria in culture is disclosed. The method incorporates construction of at least one data set, which may be a spectrum, interference pattern, or scattering pattern, from a cultured sample suspected of containing said bacteria. The data set is corrected for the presence of water in the sample, spectral features are extracted using a principal components analysis, and the features are classified using a learning algorithm. In some embodiments of the invention, for example, to differentiate MRSA from MSSA, a multimodal analysis is performed in which identification of the bacteria is made based on a spectrum of the sample, an interference pattern used to determine cell wall thickness, and a scattering pattern used to determine cell wall roughness. An apparatus for performing the method is also disclosed, one embodiment of which incorporates a multiple sample analyzer.
Abstract:
The present invention provides a method to calibrate a NIR analyzer to measure monomer concentrations at one or more locations in a reactor system. The regression coefficients for the NIR analyzer are transferable between reactors using the same process (solution polymerization to solution polymerization) and may be used to control the reaction, or calibrate flow meters on line.
Abstract:
This disclosure relates to a method for analyzing a sample of material. The method includes (a) converting a portion of the sample into a plasma multiple times; (b) recording a spectrum of electromagnetic radiation emitted in response to each of the sample conversions to define a sequence of spectra for the sample, in which each member of the sequence corresponds to the spectrum recorded in response to a different one of the sample conversions; (c) using an electronic processor to compare the sequence of spectra for the sample to a sequence of spectra for each of at least one reference sample in a reference library; and (d) using the electronic processor to determine information about the sample based on the comparison to the reference samples in the library.
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
Spectroscopic analyses of complex mixtures within the matrix of a sample can oftentimes be complicated by spectral overlap of the constituents and/or the matrix, making it difficult to quantitatively assay each constituent therein. Methods for analyzing a sample can comprise: providing a sample comprising a matrix and one or more constituents therein; exposing the sample to electromagnetic radiation in a spectral region where the matrix optically interacts with the electromagnetic radiation, so as to acquire a spectrum of the matrix; and analyzing the spectrum of the matrix within a wavelength range where the matrix has a molar extinction coefficient of at least about 0.01 M−1mm−1 to determine at least one property of the sample, the at least one property of the sample being selected from the group consisting of a concentration of at least one constituent in the sample, at least one characteristic of the sample, and any combination thereof.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
The invention provides a process for monitoring and/or adjusting a dispersion polymerization of an olefin-based polymer, the process comprising monitoring the concentration of the carbon-carbon unsaturations in the dispersion using Raman Spectroscopy. The invention also provides a process for polymerizing an olefin-based polymer, the process comprising polymerizing one or more monomer types, in the presence of at least one catalyst and at least one solvent, to form the polymer as a dispersed phase in the solvent; and monitoring the concentration of the carbon-carbon unsaturations in the dispersion using Raman Spectroscopy.