Abstract:
Electronic device manufacturing apparatus and robot apparatus are described. The apparatus are configured to efficiently pick and place substrates wherein the robot apparatus includes an arm component and a blade component. The blade component may comprise two or more end effectors that can retrieve and place two or more substrates at a time. The apparatus can include multiple arm components and multiple blade components. Each blade component can comprise two or more end effectors to carry two or more substrates at one time. The blade components can move independent of one another or may be dependently connected.
Abstract:
Electronic device manufacturing apparatus and robot apparatus are described. The apparatus are configured to efficiently pick and place substrates wherein the robot apparatus includes an upper arm and three blades B1, B2, B3 that are independently rotatable. The three blades are configured to service a first dual load lock and second dual load lock wherein each dual load lock includes a different pitch. In some embodiments, a first pitch P1 is smaller than a second pitch P2. Blades B2 and B3 (or optionally blades B1 and B2) can service the first dual load lock with Pitch P1 and blades B1 and B3 can service the second dual load lock including the second pitch P2. Methods of operating the electronic device manufacturing apparatus and the robot apparatus are provided, as are numerous other aspects.
Abstract:
Methods and apparatuses for dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating by a laser beam with a centrally peaked spatial power profile to form an ablated trench in the substrate below thin film device layers which is positively sloped. In an embodiment, a femtosecond laser forms a positively sloped ablation profile which facilitates vertically-oriented propagation of microcracks in the substrate at the ablated trench bottom. With minimal lateral runout of microcracks, a subsequent anisotropic plasma etch removes the microcracks for a cleanly singulated chip with good reliability.
Abstract:
Embodiments disclose a vibration-controlled robot apparatus. The apparatus includes a robot having an end effector operable to transport a substrate, a sensor coupled to the robot, the sensor operable to sense vibration as the robot transports the substrate, and operating the robot to reduce vibration of the end effector supporting the substrate. In some embodiments, a filter is provided in the motor drive circuit to filter one or more frequencies causing unwanted vibration of the end effector. Vibration control systems and methods of operating the same are provided, as are other aspects.
Abstract:
A substrate processing system includes a factory interface, a transfer chamber of heptagonal shape and including four first facets and three second facets, each having a width that is narrower than that of each of the four first facets. A processing chamber is attached to one of the four first facets. A first auxiliary chamber attached to a first of the three second facets and is smaller than the first processing chamber. A load lock is attached to a second of the three second facets and to the factory interface. A second auxiliary chamber is attached to a third of the three second facets. The load lock is attached to the transfer chamber between the first and second auxiliary chambers. A robot is attached to a bottom of the transfer chamber and adapted to transfer substrates to/from the first processing chamber, the first auxiliary chamber, and the load lock.
Abstract:
A substrate processing system includes a factory interface having a controlled environment and a transfer chamber. The transfer chamber includes four first facets and three second facets, where each of the three second facets has a width that is narrower than that of each of the four first facets. A first processing chamber is attached to one of the four first facets. A first auxiliary chamber is attached to a first of the three second facets, where the first auxiliary chamber is smaller than the first processing chamber. A load lock is attached to a second of the three second facets and to the factory interface. A robot is attached to a bottom of the transfer chamber, the robot adapted to transfer substrates to and from the first processing chamber, the first auxiliary chamber, and the load lock.
Abstract:
An equipment front end module, including: an equipment front end module chamber. An upper plenum at a top of the equipment front end module and including an opening into the equipment front end module chamber. A plurality of return ducts that are coupled between a bottom of the equipment front end module chamber and the upper plenum, the plurality of return ducts providing a return gas flow path enabling recirculation of gas from the equipment front end module chamber to the upper plenum.
Abstract:
A substrate processing system includes a factory interface having a controlled environment and a transfer chamber. The transfer chamber includes four first facets and three second facets, where each of the three second facets has a width that is narrower than that of each of the four first facets. A first processing chamber is attached to one of the four first facets. A first auxiliary chamber is attached to a first of the three second facets, where the first auxiliary chamber is smaller than the first processing chamber. A load lock is attached to a second of the three second facets and to the factory interface. A robot is attached to a bottom of the transfer chamber, the robot adapted to transfer substrates to and from the first processing chamber, the first auxiliary chamber, and the load lock.
Abstract:
Disclosed herein are embodiments of a mass flow control apparatus, systems incorporating the same, and methods using the same. In one embodiment, a mass flow control apparatus comprises a flow modulating valve configured to modulate gas flow in a gas flow channel, a sensor device, such as a micro-electromechanical (MEMS) device, configured to generate a signal responsive to a condition of the gas flow, and a processing device operatively coupled to the flow modulating valve and the sensor device to control the flow modulating valve based on a signal received from the sensor device.
Abstract:
Disclosed herein are embodiments of a sensor device, systems incorporating the same, and methods of fabricating the same. In one embodiment, a sensor device comprises a free-standing sensing element, such as a micro-electromechanical system (MEMS) device. The sensor device further comprises a metallic band to facilitate mounting the MEMS device to a mounting plate. The sensor device further comprises a conformal coating on a least a portion of a sensor region of the sensor device.