Abstract:
A method and apparatus for adaptive uplink/downlink resource assignment may include determining uplink interference associated with each of several uplink resources. The method and apparatus may produce an uplink list with values for the uplink resources. The values may include one value indicating high interference and another value indicating low interference. The method and apparatus may compare a downlink power level to a threshold for each of the downlink resources and produce a downlink list indicating which of the downlink resources have a downlink power level which exceeds the threshold. Also, the method and apparatus may send the uplink list and downlink list. Further, the method and apparatus may receive an uplink list and a downlink list from each of several neighboring wireless network devices. The method and apparatus may assign uplink and downlink resources to a user equipment based on the uplink and downlink lists received.
Abstract:
The transmission and decoding of resource blocks (RBs) transmitted via a multiple-input multiple-output (MIMO) antenna having a plurality of transmit antennas is disclosed. Each RB includes a plurality of resource elements (REs). Each RE is reserved for one of a common reference signal (CRS) associated with one of the transmit antennas, a dedicated reference signal (DRS) including a single beamformed or precoded pilot, a DRS including a composite beamformed or precoded pilot, and a data symbol. Each RB may include a “control type” data symbol that indicates a DRS mode associated with the RB. In one DRS mode, each DRS includes a single beamformed or precoded pilot. In another DRS mode, each DRS includes a composite beamformed or precoded pilot. In yet another DRS mode, single beamformed or precoded pilots, and composite beamformed or precoded pilots, may coexist and be transmitted simultaneously within the same RBs or in different RBs.
Abstract:
A method and wireless transmit/receive unit (WTRU) include a WTRU configured to search a frequency bandwidth, out of a set of potential frequency bandwidths, for synchronization signals. The frequency bandwidth includes a secondary synchronization signal in subcarriers. Other subcarriers in the frequency bandwidth outside of the secondary synchronization signal include data. The WTRU is configured to synchronize using the secondary synchronization signal in the frequency bandwidth. The WTRU is configured to recover the data in the frequency bandwidth
Abstract:
A method of feedback in a wireless transmit receive unit includes providing a precoding matrix index (PMI), error checking the (PMI) to produce an error check (EC) bit, coding the PMI and the EC bit and transmitting the coded PMI and EC bit.
Abstract:
A method of feedback in a wireless transmit receive unit includes providing a precoding matrix index (PMI), error checking the (PMI) to produce an error check (EC) bit, coding the PMI and the EC bit and transmitting the coded PMI and EC bit.
Abstract:
A method of feedback in a wireless transmit receive unit includes providing a precoding matrix index (PMI), error checking the (PMI) to produce an error check (EC) bit, coding the PMI and the EC bit and transmitting the coded PMI and EC bit.
Abstract:
A method of feedback in a wireless transmit receive unit includes providing a precoding matrix index (PMI), error checking the (PMI) to produce an error check (EC) bit, coding the PMI and the EC bit and transmitting the coded PMI and EC bit.
Abstract:
A method and apparatus for adaptive uplink/downlink resource assignment may include determining uplink interference associated with each of several uplink resources. The method and apparatus may produce an uplink list with values for the uplink resources. The method and apparatus may compare a downlink power level to a threshold for each of the downlink resources and produce a downlink list. The downlink list may be a bit stream providing an indication, for each downlink resource, indicating whether each of the downlink resources have a downlink power level which is less than or equal to the threshold. The method and apparatus may send the uplink and downlink lists. The method and apparatus may receive an uplink list and a downlink list from each of several neighboring wireless network devices. The method and apparatus may schedule uplink and downlink resources to a user equipment based on the uplink and downlink lists received.
Abstract:
A method and apparatus for accessing a contention-based uplink random access channel (RACH) in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) randomly selects a RACH subchannel and a signature among a plurality of available RACH subchannels and signatures. The WTRU transmits a preamble using the selected signature via the selected RACH subchannel at a predetermined or computed transmission power. A base station monitors the RACH to detect the preamble and sends an acquisition indicator (AI) to the WTRU when a signature is detected on the RACH. When receiving a positive acknowledgement, the WTRU sends a message part to the base station. If receiving a negative acknowledgement or no response, the WTRU retransmits the preamble.
Abstract:
A method and apparatus for processing feedback implemented in a wireless transmit/receive unit (WTRU) comprises estimating a channel matrix. The effective channel is calculated and a precoding matrix is selected. Feedback bits are generated and transmitted.