Abstract:
A method and apparatus for processing feedback implemented in a wireless transmit/receive unit (WTRU) comprises estimating a channel matrix. The effective channel is calculated and a precoding matrix is selected. Feedback bits are generated and transmitted.
Abstract:
A multiple-input multiple-output (MIMO) beamforming-based single carrier frequency division multiple access (SC-FDMA) system is disclosed. At the transmitter, a fast Fourier transform (FFT) is performed on transmission data to generate frequency domain data. The frequency domain transmit data is mapped to assigned subcarriers. An inverse fast Fourier transform (IFFT) is performed on the transmit data mapped to the assigned subcarriers to generate time domain transmit data. The time domain transmit data is transmitted via antennas. At a receiver, an FFT is performed on the received data to generate frequency domain received data. Subcarrier demapping is performed to extract data mapped on the assigned subcarriers. A channel estimator generates a channel matrix which is decomposed into U, D and VH matrices. A channel distortion and interference between transmit and receive antennas are equalized based on the decomposed channel matrices to the extracted frequency domain received data.
Abstract:
Systems, methods, and instrumentalities for a WTRU to perform channel estimation and/or noise estimation are provided. The techniques described herein may be used to perform channel estimation and/or noise estimation that meet certain performance and latency goals while utilizing a lower cost design than previous channel/noise estimation techniques. For example, the channel estimation/noise estimation techniques described herein may be implemented using less memory (e.g., less memory for storing filter coefficients) while still achieving the desired latency and performance goals. The techniques described herein may be implemented by any WTRU and/or by a WTRU specifically designed to be low-cost.
Abstract:
A method and apparatus for accessing a contention-based uplink random access channel (RACH) in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) randomly selects a RACH subchannel and a signature among a plurality of available RACH subchannels and signatures. The WTRU transmits a preamble using the selected signature via the selected RACH subchannel at a predetermined or computed transmission power. A base station monitors the RACH to detect the preamble and sends an acquisition indicator (AI) to the WTRU when a signature is detected on the RACH. When receiving a positive acknowledgement, the WTRU sends a message part to the base station. If receiving a negative acknowledgement or no response, the WTRU retransmits the preamble.
Abstract:
A method and apparatus for processing feedback implemented in a wireless transmit/receive unit (WTRU) comprises estimating a channel matrix. The effective channel is calculated and a precoding matrix is selected. Feedback bits are generated and transmitted.
Abstract:
Disclosed are embodiments of apparatuses and methods of use thereof for frequency domain (FD) chip level (CL) equalizers used in wireless receivers. The FD-CL-EQ may further selectively apply a higher order matrix inverse or a lower order matrix inverse in the calculation of a channel estimate based on whether interference is present or not. Further disclosed are embodiments of methods and apparatuses for estimating pilot signal-to-interference ratio (SIR) in the wireless receivers. Further disclosed are methods and apparatuses for compensating for phase errors in received demodulated data symbols to improve performance of the wireless receivers.
Abstract:
A method and apparatus for accessing a contention-based uplink random access channel (RACH) in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) randomly selects a RACH subchannel and a signature among a plurality of available RACH subchannels and signatures. The WTRU transmits a preamble using the selected signature via the selected RACH subchannel at a predetermined or computed transmission power. A base station monitors the RACH to detect the preamble and sends an acquisition indicator (AI) to the WTRU when a signature is detected on the RACH. When receiving a positive acknowledgement, the WTRU sends a message part to the base station. If receiving a negative acknowledgement or no response, the WTRU retransmits the preamble.
Abstract:
A method and apparatus for processing feedback implemented in a wireless transmit/receive unit (WTRU) comprises estimating a channel matrix. The effective channel is calculated and a precoding matrix is selected. Feedback bits are generated and transmitted.
Abstract:
A multiple-input multiple-output (MIMO) beamforming-based single carrier frequency division multiple access (SC-FDMA) system is disclosed. At the transmitter, a fast Fourier transform (FFT) is performed on transmission data to generate frequency domain data. The frequency domain transmit data is mapped to assigned subcarriers. An inverse fast Fourier transform (IFFT) is performed on the transmit data mapped to the assigned subcarriers to generate time domain transmit data. The time domain transmit data is transmitted via antennas. At a receiver, an FFT is performed on the received data to generate frequency domain received data. Subcarrier demapping is performed to extract data mapped on the assigned subcarriers. A channel estimator generates a channel matrix which is decomposed into U, D and VH matrices. A channel distortion and interference between transmit and receive antennas are equalized based on the decomposed channel matrices to the extracted frequency domain received data.
Abstract:
A method and apparatus for accessing a contention-based uplink random access channel (RACH) in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) randomly selects a RACH subchannel and a signature among a plurality of available RACH subchannels and signatures. The WTRU transmits a preamble using the selected signature via the selected RACH subchannel at a predetermined or computed transmission power. A base station monitors the RACH to detect the preamble and sends an acquisition indicator (AI) to the WTRU when a signature is detected on the RACH. When receiving a positive acknowledgement, the WTRU sends a message part to the base station. If receiving a negative acknowledgement or no response, the WTRU retransmits the preamble.