Abstract:
A transparent conductive film is disclosed. It includes a transparent film base and a transparent electrode layer comprising a transparent conductive oxide layer and a patterned metal layer stacked in contact with each other. The maximum layer thickness of the transparent electrode layer is 300 nm. The metal layer has a metal pattern width of 1 μm or more and 8 μm or less, and the metal pattern coverage ratio of 0.4% or more and 3.2% or less. It is preferable that the metal layer has a layer thickness of 50 nm or more and 250 nm or less. It is also preferable that the pattern shape of the metal layer is of stripes, mesh, dots or the like.
Abstract:
A solar cell includes a photoelectric conversion section having first and second principal surfaces, and a collecting electrode formed on the first principal surface. The collecting electrode includes first and second electroconductive layers in this order from the photoelectric conversion section side, and includes an insulating layer between the first and second electroconductive layers. The insulating layer is provided with an opening, and the first and second electroconductive layers are in conduction with each other via the opening provided in the insulating layer. The solar cell has, on the first principal surface, the second principal surface or a side surface of the photoelectric conversion section, an insulating region freed of a short circuit of front and back sides of the photoelectric conversion section, and the surface of the insulating region is at least partially covered with the insulating layer.
Abstract:
A composite solar cell comprises a spectroscopic element, a first photoelectric conversion element, and a second photoelectric conversion element. The first photoelectric conversion element is positioned in a first direction of the spectroscopic element and the second photoelectric conversion element is positioned in a second direction of the spectroscopic element. The first photoelectric conversion element is a perovskite-type photoelectric conversion element containing, in a light absorbing layer, a perovskite crystal structure material represented by a general formula R1NH3M1X3. A band gap of a light absorbing layer of the second photoelectric conversion element is narrower than the band gap of the light absorbing layer of the first photoelectric conversion element. The spectroscopic element preferentially outputs the short wavelength light of the incident light in the first direction and preferentially outputs the long wavelength light of the incident light in the second direction.
Abstract:
The thin-film photoelectric conversion device of the present invention includes: a transparent electroconductive film having zinc oxide as a main component; a contact layer; a photoelectric conversion unit having a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer in this order; and a back electrode layer, in this order, on one main surface of a substrate. The contact layer has an intrinsic crystalline semiconductor layer and a p-type crystalline semiconductor layer in this order from the substrate side, and the intrinsic crystalline semiconductor layer of the contact layer and the transparent electroconductive film are in contact with each other. The p-type crystalline semiconductor layer of the contact layer is preferably a layer having as a main component a silicon alloy selected from the group consisting of a silicon oxide; a silicon nitride; and silicon carbide.
Abstract:
The present invention relates to a substrate with a transparent electrode, which has a transparent electrode layer on at least one surface of a transparent film base material. The transparent film base material has a transparent dielectric material layer containing an oxide as a main component on a surface at the transparent electrode layer side. In one embodiment of the present invention, the transparent electrode layer is a crystalline transparent electrode layer that has a crystallinity degree of 80% or more. In this embodiment, the crystalline transparent electrode layer has a resistivity of 3.5×10−4 Ω·cm or less, a thickness of 15 nm to 40 nm, an indium oxide content of 87.5% to 95.5%, and a carrier density of 4×1020/cm3 to 9×1020/cm3, and the substrate with the transparent electrode preferably has a heat shrinkage start temperature of 75° C. to 120° C. as measured by thermomechanical analysis.
Abstract translation:本发明涉及具有透明电极的基板,其在透明膜基材的至少一个表面上具有透明电极层。 透明膜基材在透明电极层侧的表面具有含有氧化物作为主要成分的透明电介质材料层。 在本发明的一个实施例中,透明电极层是结晶度为80%以上的结晶透明电极层。 在本实施方式中,结晶透明电极层的电阻率为3.5×10 -4&OHgr·cm以下,厚度为15nm〜40nm,氧化铟含量为87.5〜95.5%,载流子密度 4×10 20 / cm 3〜9×10 20 / cm 3,通过热机械分析测定,具有透明电极的基板的热收缩开始温度优选为75℃〜120℃。