Abstract:
An atmospheric pressure ionisation (API) ion source is provided that comprises a heater configured to heat a spray of droplets. The ion source may comprise a target, where the spray of droplets is arranged to impact upon the target. An inductive heater may be configured to surround and heat at least a part of the target. Alternatively, a resistive heater may be configured within a target comprising an electrically conductive tube. Also, there may be provided an inductive heater configured to heat a flow of gas, wherein the heated flow of gas is arranged to heat the spray of droplets.
Abstract:
A dual-mode ion detector for a mass and/or ion mobility spectrometer comprising a first conversion electrode (20) that is maintained, in use, at a negative potential and arranged for converting incident positive ions (32) into secondary electrons (34), and a second conversion electrode (22) that is maintained, in use, at a positive potential and arranged for converting incident negative ions (42) into secondary positive ions (44) and/or secondary electrons (74). The detector also comprises an electron detecting surface (26) and an entrance electrode (24) for drawing ions into the ion detector. The ion detector is switchable between a first mode for detecting positive ions and a second mode for detecting negative ions.
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionization source and a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. An ion detector is located in the third vacuum chamber. A first RF ion guide is located within the first vacuum chamber and a second RF ion guide is located within the second vacuum chamber. The ion path length from the atmospheric pressure sampling orifice or capillary to an ion detecting surface of the ion detector is ≤400 mm. The mass spectrometer further comprises a tandem quadrupole mass analyzer, a 3D ion trap mass analyzer, a 2D or linear ion trap mass analyzer, a Time of Flight mass analyzer, a quadrupole-Time of Flight mass analyzer or an electrostatic mass analyzer arranged in the third vacuum chamber. The product of the pressure P1 in the vicinity of the first RF ion guide and the length L1 of the first RF ion guide is in the range 10-100 mbar-cm and the product of the pressure P2 in the vicinity of the second RF ion guide and the length L2 of the second RF ion guide is in the range 0.05-0.3 mbar-cm.
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionisation source and a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. An ion detector is located in the third vacuum chamber. A first RF ion guide is located within the first vacuum chamber and a second RF ion guide is located within the second vacuum chamber. The ion path length from the atmospheric pressure sampling orifice or capillary to an ion detecting surface of the ion detector is ≤400 mm. The mass spectrometer further comprises a tandem quadrupole mass analyser, a 3D ion trap mass analyser, a 2D or linear ion trap mass analyser, a Time of Flight mass analyser, a quadrupole-Time of Flight mass analyser or an electrostatic mass analyser arranged in the third vacuum chamber. The product of the pressure P1 in the vicinity of the first RF ion guide and the length L1 of the first RF ion guide is in the range 10-100 mbar-cm and the product of the pressure P2 in the vicinity of the second RF ion guide and the length L2 of the second RF ion guide is in the range 0.05-0.3 mbar-cm.
Abstract:
An ion guide comprises a first ion guide portion that forms a first ion guiding path and a second ion guide portion that forms a second ion guiding path. A first device applies a plurality of different first voltages or potentials to the electrodes of the first ion guide portion in order to generate an electric field that directs ions from the first ion guiding path of the first ion guide portion into the second ion guiding path of the second ion guide portion. The use of plural different first voltages can provide a controlled transfer of ions from the first ion guiding path into the second ion guiding path.
Abstract:
A voltage supply system for supplying an RF voltage to an RF resonant load comprising an ion-optical component of a mass spectrometer is disclosed. The system comprises a Direct Digital Synthesiser (“DDS”) arranged and adapted to output an RF voltage. The voltage supply system is arranged and adapted: (i) to vary the frequency of the RF voltage output by the Direct Digital Synthesiser, (ii) to determine a first resonant frequency of the RF resonant load comprising the ion-optical component, and (iii) to determine whether or not the generation of an RF voltage at the first resonant frequency by the Direct Digital Synthesiser would also result in the generation of a spur frequency close to the first resonant frequency. If it is determined that a spur frequency would be generated close to the first resonant frequency then the voltage supply system is further arranged and adapted: (iv) to consult a look-up table comprising one or more preferred frequencies, and (v) to direct the Direct Digital Synthesiser to generate an RF voltage at a second frequency which corresponds with one of the preferred frequencies from the look-up table, wherein the second frequency is different to said first resonant frequency.
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionisation source 701, a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. A first vacuum pump 707 is arranged and adapted to pump the first vacuum chamber, wherein the first vacuum pump 707 is arranged and adapted to maintain the first vacuum chamber at a pressure
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionization source, a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. A first vacuum pump is arranged and adapted to pump the first vacuum chamber, wherein the first vacuum pump is arranged and adapted to maintain the first vacuum chamber at a pressure
Abstract:
A method of Electrospray ionisation is disclosed comprising passing a sample liquid through a liquid chromatography column, monitoring a liquid chromatography back pressure and varying a voltage applied to an Electrospray ionisation source electrode in dependence upon said monitored liquid chromatography back pressure.
Abstract:
An ion source is disclosed comprising one or more nebulizers and one or more mesh or grid targets. The one or more nebulizers are arranged and adapted to emit, in use, a stream predominantly of droplets which are caused to impact upon the one or more mesh or grid targets and to ionize the droplets to form a plurality of ions.