Abstract:
A circuit board has a low thermal expansion coefficient that suits the thermal expansion coefficient of an element to be mounted thereupon and can prevent the occurrence of delamination and cracking of a core layer when the circuit board is used in a low temperature environment. The circuit board is constructed by laminating a core layer and at least one wiring layer, where the at least one wiring layer has slightly smaller external dimensions in a planar direction than the core layer.
Abstract:
A semiconductor device includes a support body, a first substrate provided on a surface at one side of the support body, a second substrate provided on a surface at the other side of the support body, and a semiconductor chip provided on the first substrate exposed to an opening part piercing the support body and the second substrate. The first substrate includes a first dielectric layer and a wiring layer, a plurality of first electrodes connected to the semiconductor chip which first electrodes are provided on a first surface of the first substrate exposed to an inside of the opening part, and the second substrate includes a second dielectric layer made of a material substantially the same as the first dielectric layer.
Abstract:
The wiring board comprises a plate-shaped conductive core material 10 with a through-hole 12 formed in, an insulation layer 14 formed on the surface of the conductive core material 10 and on the inside wall of the through-hole 12, a resin 18 buried in the through-hole 12 with the insulation layer 14 formed in, wirings 22a, 22b formed on the upper surface and the undersurface of the conductive core material 10 with the insulation layer 14 formed on, and an wiring 22d formed in the through-hole 20 formed in the resin 18 and electrically connected to the wirings 22a, 22b.
Abstract:
The wiring board comprises a plate-shaped conductive core material 10 with a through-hole 12 formed in, an insulation layer 14 formed on the surface of the conductive core material 10 and on the inside wall of the through-hole 12, a resin 18 buried in the through-hole 12 with the insulation layer 14 formed in, wirings 22a, 22b formed on the upper surface and the undersurface of the conductive core material 10 with the insulation layer 14 formed on, and an wiring 22d formed in the through-hole 20 formed in the resin 18 and electrically connected to the wirings 22a, 22b.
Abstract:
A method for bonding of substrates has a steps of irradiating surfaces of the substrates respectively in a vacuum with both an inert gas beam and a metal beam thereby forming island shaped thin metal films on the surfaces of the substrates, and surface-activated bonding of the substrates through the island shaped thin metal films by contacting the surfaces of the substrates each other.
Abstract:
A method for recycling in place an asphalt mixture layer of a paved road continuously, while moving a self-propelled vehicle system, which comprises a step of heating and softening the asphalt mixture layer, a step of scraping and breaking said hot and softened asphalt mixture layer and keeping the softened mixture at a temperature sufficient not to form an aggregate, to prepare an asphalt mixture having a single-grained structure, a sieving step of classifying said asphalt mixture having a single-grained structure into a plurality of grain size groups, a step of designing mix proportions for converting said asphalt mixture to a recycled asphalt mixture by the use of said plurality of grain size groups classified, a step of mixing uniformly said recycled asphalt mixtures having designed mix proportions, and a step of spreading and compacting said recycled asphalt mixtures having been mixed uniformly, to thereby form a recycled asphalt mixtures layer.
Abstract:
A multilayer wiring board (X1) comprises a core portion (100) and out-core wiring portion (30). The core portion (100) comprises a carbon fiber reinforced portion (10) composed of a carbon fiber material (11) and resin composition (12), and an in-core wiring portion (20) which has a laminated structure of at least one insulating layer (21) containing a glass fiber material (21a) and a wiring pattern (22) composed of a conductor having an elastic modulus of 10 to 40 GPa and which is bonded to the carbon fiber reinforced portion (10). The out-core wiring portion (30) has a laminated structure of at least one insulating layer (31) and a wiring pattern (32) and is bonded to the core portion (100) at the in-core wiring portion (20).
Abstract:
A method is provided for manufacturing a multilayer wiring board wherein good adhesion is achieved between an insulating layer and a wiring pattern. The multilayer wiring board has a laminar structure which includes insulating layers and a wiring pattern. The method includes at least the steps of sticking a support whose surface has been treated with a coupling agent onto an insulating layer with a coupling agent interposed therebetween, and transferring the coupling agent to the insulating layer by removing the support while leaving the coupling agent on the insulating layer.
Abstract:
A multilayer wiring board (X1) comprises a core portion (100) and out-core wiring portion (30). The core portion (100) comprises a carbon fiber reinforced portion (10) composed of a carbon fiber material (11) and resin composition (12), and an in-core wiring portion (20) which has a laminated structure of at least one insulating layer (21) containing a glass fiber material (21a) and a wiring pattern (22) composed of a conductor having an elastic modulus of 10 to 40 GPa and which is bonded to the carbon fiber reinforced portion (10). The out-core wiring portion (30) has a laminated structure of at least one insulating layer (31) and a wiring pattern (32) and is bonded to the core portion (100) at the in-core wiring portion (20).
Abstract:
A method of manufacturing a multilayer circuit substrate includes a process of forming via holes in an insulating film, a process of applying an electrically conducting paste obtained by having ultra-fine metal particles disperse in a solvent onto an insulating film, and a process of forming vias composed of a sintered product of ultra-fine metal particles in the via holes by removing the solvent and also sintering the ultra-fine metal particles. The sintered products of the ultra-fine metal particles on the insulating layer is removed (or patterned) by peeling off the protective film stuck to the insulating layer.