Abstract:
A semiconductor device having metal gate includes a first metal gate structure and a second metal gate structure disposed in a first device region and in a second device region on a substrate respectively. The first metal gate structure includes a gate insulating layer, a first bottom barrier layer, a top barrier layer, and a metal layer disposed on the substrate in order, wherein the top barrier layer is directly in contact with the first bottom barrier layer. The second metal gate structure includes the gate insulating layer, a second bottom barrier layer, the top barrier layer, and the metal layer on the substrate in order, wherein the top barrier layer is directly in contact with the second bottom barrier layer. The first bottom barrier layer and the second bottom barrier layer have different impurity compositions.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device include a substrate, and a first transistor, a second transistor and a third transistor all disposed on the substrate. The first transistor includes a first channel, and a first barrier layer and a first work function layer stacked with each other on the first channel. The second transistor includes a second channel, and a second barrier layer and a second work function layer stacked with each other. The third transistor includes a third channel and a third barrier layer and a third work function layer stacked with each other on the third channel, wherein the first barrier layer, the second barrier layer and the third barrier layer have different nitrogen ratio. The first, the second and the third transistors have different threshold voltages, respectively.
Abstract:
The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having an interlayer dielectric (ILD) layer thereon; forming a first recess, a second recess, and a third recess in the ILD layer; forming a material layer on the ILD layer and in the first recess, the second recess, and the third recess; performing a first treatment on the material layer in the first recess; and performing a second treatment on the material layer in the first recess and second recess.
Abstract:
A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a dummy gate on each of the NMOS region and the PMOS region respectively; removing the dummy gates from each of the NMOS region and the PMOS region; forming a n-type work function layer on the NMOS region and the PMOS region; removing the n-type work function layer in the PMOS region; forming a p-type work function layer on the NMOS region and the PMOS region; and depositing a low resistance metal layer on the p-type work function layer of the NMOS region and the PMOS region.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
A semiconductor structure and a manufacturing method thereof are disclosed. The semiconductor structure includes an isolation layer, a gate dielectric layer, a first work function metal, a first bottom barrier layer, a second work function metal, and a first top barrier layer. The isolation layer is formed on a substrate and has a first gate trench. The gate dielectric layer is formed in the first gate trench. The first work function metal is formed on the gate dielectric layer in the first gate trench. The first bottom barrier layer is formed on the first work function metal. The second work function metal is formed on the first bottom barrier layer. The first top barrier layer is formed on the second work function metal.
Abstract:
A semiconductor device with oxygen-containing metal gates includes a substrate, a gate dielectric layer and a multi-layered stack structure. The multi-layered stack structure is disposed on the substrate. At least one layer of the multi-layered stack structure includes a work function metal layer. The concentration of oxygen in the side of one layer of the multi-layered stack structure closer to the gate dielectric layer is less than that in the side of one layer of the multi-layered stack structure opposite to the gate dielectric layer.
Abstract:
A semiconductor structure including a first substrate, a first conductive layer, and first bonding pads is provided. The first conductive layer is located on the first substrate. The first conductive layer includes a main body portion and an extension portion. The extension portion is connected to the main body portion and includes a terminal portion away from the main body portion. The first bonding pads are connected to the main body portion and the extension portion. The number of the first bonding pads connected to the terminal portion of the extension portion is plural.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.