Abstract:
A system and method for use during the administration of CPR chest compressions and defibrillating shock on a cardiac arrest victim. The system analyzes compression waveforms from a compression depth monitor to determine the source of chest compressions, and enables the delivery of defibrillating shock during a compression cycle if the compression waveforms are characteristic of an automated CPR chest compression device.
Abstract:
Systems and methods of processing raw electrocardiogram (ECG) waveform data of a patient into estimated real-time ECG waveform data. The method includes sensing at least one physical non-cardiac influence on the raw ECG waveform data, constructing a time domain computer model of the at least one physical, non-cardiac influence on the raw ECG waveform data, and adaptively filtering the raw ECG waveform data in the time domain using the constructed time domain computer model of the at least one physical non-cardiac influence on the raw ECG waveform data to form the estimated real-time ECG waveform data. The system can include an ECG device for collecting raw ECG waveform data, at least two ECG electrodes positioned on the patient and electrically coupled to the ECG device, and a processor coupled to the ECG device and configured to compute a time domain model of an artifact created by chest compressions.
Abstract:
A walking assist cart includes a cart body on which a load can be placed, a drive portion that drives a drive wheel, an inclination sensor that detects the inclination angle of the cart body, and a controller that acquires the weight of the load placed on the cart body based on the drive force of the drive portion and the inclination angle of the cart body and outputs assist drive force based on the weight of the load that is acquired.
Abstract:
A support unit is connected to a shaft of a main wheel and thus is always maintained in parallel to or at a predetermined angle to a road surface, independently of an inclination angle of a main body. Accordingly, an incline estimating unit regards an inclination angle θ3 being a value in an inclination sensor as being equal to an inclination angle θ2 of the road surface (or in a case where the support unit is inclined a predetermined angle to the road surface, an angle from θ3 to the predetermined angle is subtracted from or added to the crossing angle) and outputs the estimated inclination angle θ2 of the road surface to a target inclination angle determining unit.
Abstract:
A method and apparatus for recognizing a gait motion are provided. The apparatus may set a gait motion recognition period based on measured right and left hip joint angle information, may input, to a trained neural network, right and left hip joint angle information and vertical acceleration information measured during the gait motion recognition period, and may recognize a gait motion.
Abstract:
A powered exoskeleton configured to be coupled to lower limbs of a person is controlled to impart a movement desired by the person. The intent of the person is determined by a controller based on monitoring at least one of: positional changes in an arm portion of the person, positional changes in a head of the person, an orientation of a walking aid employed by the person, a contact force between a walking aid employed by the person and a support surface, a force imparted by the person on the walking aid, a force imparted by the person on the walking aid, a relative orientation of the exoskeleton, moveable components of the exoskeleton and the person, and relative velocities between the exoskeleton, moveable components of the exoskeleton and the person.
Abstract:
A device and method coupled to a therapy garment to apply pressure and repetitive compression forces to a body of a person has an air pulsator and a user programmable time, frequency and pressure controller operable to regulate the duration of operation, frequency of the air pulses and a selected air pressure applied to the body of a person.
Abstract:
To provide a walking assist device which can apply torque to a knee joint at a suitable timing. A walking assist device includes an actuator, a reaction force sensor and an angle sensor. The walking assist device is fitted to a user's leg. The actuator is able to apply torque to a knee joint of one leg of the user. The reaction force sensor detects a reaction force that the foot of the one leg receives from the floor. The angle sensor detects a hip joint angle of the one leg around a pitch axis. The walking assist device specifies a timing to start applying the torque to the knee joint in a direction that swings the lower leg backward, based on the detected reaction force and the detected hip joint angle.
Abstract:
An apparatus for assisting the balance of a user is disclosed herein. The apparatus includes a first control moment gyroscope (CMG) and a second CMG configured as a scissor pair. The first CMG includes a first flywheel and a second flywheel, a first motor that rotates the first and second flywheels, a first gimbal supporting the first and second flywheel, and a first gimbal servo to rotate the first gimbal. The second CMG includes a third flywheel and a forth flywheel, a second motor that rotates the third and fourth flywheels, a second gimbal supporting the third and fourth flywheels, and a second gimbal servo to rotate the second gimbal. The apparatus additionally includes a gyroscope controller controlling the first gimbal servo and the second gimbal servo.