Abstract:
Methods for producing alcohols and oligomers contemporaneously from a hydrocarbon feed containing mixed butenes using an acid based catalyst are provided. Additionally, methods for producing fuel compositions having alcohols and oligomers prepared from mixed olefins are also provided as embodiments of the present invention. In certain embodiments, the catalyst can include a dual phase catalyst system that includes a water soluble acid catalyst and a solid acid catalyst.
Abstract:
Processes for converting lignocellulose to feedstock and downstream products are disclosed. The processes may include acid treatment of lignocellulose to produce a fermentation feedstock. In various instances, the processes include recovery or recycling of acid, such as recovery of hydrochloric acid from concentrated and/or dilute streams. Downstream products may include acrylic acid-based products such as diapers, paper and paper-based products, ethanol, biofuels such as biodiesel and fuel additives, and detergents.
Abstract:
Disclosed are automated methods and systems for certifying the volatility of butane-enriched gasoline downstream of a butane blending operation. Such automated methods and systems provide significant advantages to comply with volatility requirements imposed by EPA or state regulations.
Abstract:
An olefinic composition has a moderate concentration of Type 2 C8 olefins. The oligomerate composition has hydrocarbon molecules with minimal branching which make excellent diesel and can also be readily cracked to propylene. Consequently, oligomerate product can be sent to the diesel pool or fed or recycled to an FCC unit to increase production of propylene.
Abstract:
Processes for forming refined hydrocarbons are disclosed. Exemplary processes include providing a first mixture comprising ≧10 wt % of at least one oxygenate; contacting at least a portion of the first mixture with a methanol conversion catalyst under suitable conditions including a first pressure, P1, to yield an intermediate composition including olefins having at least two carbon atoms; introducing at least a portion of the intermediate composition to an oligomerization catalyst under suitable conditions including a second pressure, P2, to yield an effluent mixture comprising gasoline boiling range components and distillate boiling range components; and recovering at least a portion of the gasoline boiling range components and distillate boiling range components. The first and second pressure can be relatively similar. Apparatus and systems for carrying out the disclosed processes are also described.
Abstract:
An integrated process for converting low-value paraffinic materials to high octane gasoline and high-cetane diesel light is disclosed. The process involves: (1) oxidation of an iso-paraffin to alkyl hydroperoxide and alcohol; (2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; (3) converting low-octane, paraffinic gasoline molecules using the dialkyl peroxides as radical initiators, thereby forming high-cetane diesel, while the dialkyl peroxide is converted to an alcohol; (4) converting the alcohol to an olefin; and (5) alkylating the olefin with iso-butane to form high-octane alkylate. The net reaction is thus conversion of iso-paraffin to high-octane gasoline alkylate, and conversion of low-octane paraffinic gasoline to high-cetane diesel.
Abstract:
A method providing for the selective hydroprocessing of cracked naphtha feedstock to make blending components for low-sulfur gasoline and either ultra-low sulfur diesel or ultra-low sulfur jet fuel. The method includes the use of two catalytic distillation stages in combination with three stripping columns and two fixed-bed reactors integrated in a novel arrangement so as to provide for the treatment of cracked naphtha feedstock that has a high sulfur concentration to yield exceptionally low-sulfur light cracked naphtha and heavy cracked naphtha products and low-sulfur diesel or jet fuel. The desulfurized light and heavy cracked naphtha are produced with a minimal amount of hydrogenation of the olefin content and may suitably be used as gasoline, jet fuel, and diesel blending components.
Abstract:
A process for converting light paraffins to heavier paraffinic hydrocarbon fluids is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohols; (2) conversion of the alkyl hydroperoxides and alcohols to dialkyl peroxides; and (3) radical-initiated coupling of paraffins and/or iso-paraffins using the dialkyl peroxides as radical initiators, thereby forming heavier hydrocarbon products. Fractionation of the heavy hydrocarbon products can then be used to isolate fractions for use as hydrocarbon fluids.
Abstract:
A process for making high density fuels, pure terpene dimers, and byproducts from mixed terpene feedstocks and the resulting high density fuel products. The fuels produced by the process includes, dimerizing at least one terpene feedstock by mixing at least one terpene with at least one heterogeneous acidic catalyst and at least one solvent used to control the reaction temperature for a desired time and temperature to produce a crude terpene dimer (C20H32 mixture) in about 65% to about 95% chemical yield, hydrogenating the crude terpene dimer (C20H32 mixture) with at least one hydrogenation catalyst under a hydrogen atmosphere and removing the hydrogenating catalyst(s) to produce about 65% by weight to about 95% by weight of hydrogenated terpene dimer mixture, and utilizing a separation method against the hydrogenated terpene dimer mixture to produce byproducts, where the process generates a hydrocarbon mixture with a viscosity of between about 20 and 50 cSt at 40° C.
Abstract:
In a first processing chamber, a feedstock may be combined with plasma from, for example, three plasma torches to form a first fluid mixture. Each torch may have a working gas including water vapor, oxygen, and carbon dioxide. The first fluid mixture may be cooled and may contact a first heat exchange device. The output fluid from the first heat exchange device may be separated into one or more components. A syngas may be derived from the one or more components and have a ratio of carbon monoxide to hydrogen of about 1:2. The syngas may be transferred to a catalyst bed to be converted into one or more fluid fuels.