Abstract:
A fuel additive for hydrocarbon fuel that is fueled in fired burners and open flames for enhancing fuel storage, for enhancing fuel combustion by increasing fuel efficiency, and/or for reducing undesirable emissions, such as pollutants, includes an inorganic metal oxide, a metal carboxylate, an acid, and an organic dispersion fluid.
Abstract:
A fuel additive composition that produces a potentiator as a chemical agent that alters the molecular makeup of fuel and causes a change in the burn cycle so that fuel is burned sooner, while at the same time reduce carbon dioxide, carbon monoxide and nitrous oxide, comprised of Copper Naphthenate, Manganese Naphthenate, Magnesium Peroxide, Citrus essential oils, and mineral oils, dissolved and blended.
Abstract:
A method of improving the efficiency of a diesel engine provided with a source of diesel fuel includes the steps of: a) adding to the diesel fuel a reverse-micellar composition having an aqueous first disperse phase that includes a free radical initiator and a first continuous phase that includes a first hydrocarbon liquid, a first surfactant, and optionally a co-surfactant, thereby producing a modified diesel fuel, and b) operating the engine, thereby combusting the modified diesel fuel. The efficiency of a diesel engine provided with a source of diesel fuel and a source of lubricating oil can also be improved by modifying the lubricating oil by the addition of a stabilized nanoparticulate composition of cerium dioxide. The efficiency of a diesel engine can also be improved by adding to the diesel fuel a reverse-micellar composition that includes an aqueous disperse phase containing boric acid or a borate salt.
Abstract:
Methods for producing fuel compositions with predetermined desirable properties are disclosed. Feedback control can be employed to meter precise amounts of fuel composition components while monitoring fuel composition properties to obtain fuel compositions having specifically defined properties.
Abstract:
Improved methods for producing colloidal dispersions of cerium-containing oxide nanoparticles in substantially non-polar solvents is disclosed. The cerium-containing oxide nanoparticles of an aqueous colloid are transferred to a substantially non-polar liquid comprising one or more amphiphilic materials, one or more low-polarity solvents, and, optionally, one or more glycol ether promoter materials. The transfer is achieved by mixing the aqueous and substantially non-polar materials, forming an emulsion, followed by a phase separation into a remnant polar solution phase and a substantially non-polar organic colloid phase. The organic colloid phase is then collected. The promoter functions to speed the transfer of nanoparticles to the low-polarity phase. The promoter accelerates the phase separation, and also provides improved colloidal stability of the final substantially non-polar colloidal dispersion. The glycol ether promoter reduces the temperature necessary to achieve the phase separation, while providing high extraction yield of nanoparticles into the low-polarity organic phase. In addition, use of particular amphiphilic materials, such as heptanoic acid or octanoic acid, enable efficient extractions at ambient temperatures without the use of a glycol ether promoter.
Abstract:
A composition for improving the combustion efficiency of an internal combustion engine. The composition includes a mixture of a hydrocarbon fuel and an organometallic soap selected from among several cerium-containing and ferric compounds. The cerium-containing compound or compounds increase the energy released during combustion of the fuel. The ferric compound or compounds coat an interior wall of a combustion chamber of the internal combustion engine to increase the power output of the engine by reducing the accumulation of residues deposited on the interior wall which interfere with the combustion of fuel.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
Corrosive amine salts in hydrocarbon streams such as desalted crude oil streams can be prevented or avoided by adding certain amine scavenging chemicals to the streams to remove the amines therefrom. Suitable amine scavengers include, but are not necessarily limited to, carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, isocyanates, polyisocyanates, and epoxides. The non-corrosive reaction products of the amines and/or ammonia with these scavengers are preferably oil-soluble, non-basic and thermally stable. The amine scavengers bind up and react with the amines and/or ammonia to keep them from reacting with materials such as acids (e.g. HCl) to form corrosive amine salts.
Abstract:
A process for operating a utility boiler. The process has the following steps: (a) providing fuel to the boiler; (b) providing one or more additives selected from the group consisting of (i) one or more slag control agents, (ii) one or more oxygen-generating agents, (iii) one or more acid mitigation agents, (iv) one or more fouling prevention agents, (v) one or more oxidizer agents, (vi) one or more heavy metal capturing agents, and (vii) any combination of the foregoing to the boiler or an auxiliary device thereof; (c) providing air to the boiler; (d) burning the fuel in the boiler to generate heat and an exhaust gas; (e) intermittently or continuously monitoring one or more physical and/or chemical parameters of the fuel and/or intermittently or continuously monitoring one or more emissions variables of the exhaust gas to obtain one or more values therefor; and (f) varying or maintaining the rate at which either or both of the fuel and the one or more additives are provided to the boiler based on the one or more values obtained.
Abstract:
A composition for improving the combustion efficiency of an internal combustion engine. The composition includes a mixture of a hydrocarbon fuel and an organometallic soap selected from among several cerium-containing and ferric compounds. The cerium-containing compound or compounds increase the energy released during combustion of the fuel. The ferric compound or compounds coat an interior wall of a combustion chamber of the internal combustion engine to increase the power output of the engine by reducing the accumulation of residues deposited on the interior wall which interfere with the combustion of fuel.