Abstract:
A fuel composition for fuel cells includes a polar solvent such as water, a first portion of a first fuel dissolved in the solvent at a saturated concentration, and a second portion of the first fuel suspended in the solvent to serve as a reservoir of fuel as the dissolved portion is consumed. Preferably, the first fuel is a hydride such as NaBH4. Optionally, the fuel composition also includes a second fuel such as an alcohol that also controls the solubility of the first fuel in the solvent, inhibits decomposition of the first fuel and stabilizes the suspension. Preferably, the fuel composition also includes an additive such as an alkali for stabilizing the first fuel.
Abstract:
The present invention is directed to a method of providing enhanced molecular stability to hydrocarbons, such as the various oils, lubricants, fuel and rubbers typically used in internal combustion engines. The invention generally comprises inhibiting the liquid phase oxidation of hydrocarbons by atmospheric oxygen at elevated temperatures through the micro-addition of non-toxic of alkyl organic additives. The alkyl organic additives are anionic surface active agents (ASAAs) of the general formula RnullOSO3M or RnullOP3Z2, where nullMnull is Na or K, where nullZnull is Na, K or an alkyl group containing between ten and fourteen carbons and where nullRnull is an alkyl group consisting of between six and sixteen carbons. The additives are generally used in quantities from 0.01 to 10 mass percent, at temperatures between 70null-170null C. and in the presence of an aromatic solvent.
Abstract:
A method of formulating a fuel emulsion composition for use in a specified compression ignition engine in which the fuel composition includes a hydrocarbon petroleum distillate, purified water; alcohol; and an additive composition comprising various ingredients. The types and amounts of the fuel and alcohol are selected so that the sum of its net heating value (lower heating value * percent of total composition) and the net heating value of the additive composition yields a net heating value of the aqueous fuel composition that is within the operating parameters for fuel heating values for the engine.
Abstract:
An emulsion fuel additive to be mixed with a fuel oil and water for forming an emulsion fuel oil is disclosed. The emulsion fuel oil additive includes an emulsion reagent for forming a water-in-oil (W/O) emulsion fuel oil with the fuel oil and the water, a combustion-assisting reagent for improving ignition and combustion of the emulsion fuel oil, a stabilization reagent for forming an interface membrane between the fuel oil and the water by a chemical reaction at a specific temperature, a promotion reagent for promoting emulsification of the fuel oil and the water and promoting the interface membrane formation by the stabilization reagent, and an antioxidant reagent for preventing deterioration of the emulsion fuel oil during storage.
Abstract:
Glyoxal in an aqueous solution is used in a fuel additive in order to reduce pollutants in the exhaust gases of gasoline and diesel engines. It is sufficient to add glyoxal in aqueous solution to gasoline in the dilution in the ratio of 1:10 000 and higher in order to obtain a reduction of unburned hydrocarbons and carbon monoxide in vehicles with catalytic converters at idle and at increased idle of almost 100%. Esterified aliphats and polyethyleneglycol are added as emulsifiers and solubilizers. Additionally, glyoxal can be used in form of its acetals and hemiacetals with the resultant product being added to the fuel in combustion engines in order to reduce the pollutant emission and carbon particles/deposits.
Abstract:
The present invention is directed to a composition for use in a combustion engine either as a fuel additive or as an additive for a crankcase lubricant. The composition may include a polyunsaturated aliphatic or alicyclic compound having at least three, but no more than six, double bonds to improve the combustion process by acting as pseudo-catalyst in the combustion reaction. The composition may further include a derivative of dihydrobenzo-gamma-pyrane to improve the combustion process by acting as pseudo-catalyst in the combustion reaction. The composition may further include surfactants such as polyethylene glycol and/or one or more polyoxyalkene derivatives of either polypropylene glycol, polyethylene glycol or sorbitol. A media of fatty acid esters is provided to dilute the combustion promoters, surfactants and other ingredients allowing accurate concentrations of these ingredients to be introduced into the fuel chamber.
Abstract:
Methods and compositions are provided for inhibiting the polymerization of a vinyl monomer during elevated processing thereof or during storage or shipment of the monomer containing product. The compositions comprise a combination of a dihydroxybenzene compound and an organic amine compound.
Abstract:
This invention relates to oil-in-water (water continuous) emulsions that can be used as fuels, in particular oil-in-water emulsions comprising glycerol. The invention also relates to a process for their preparation and to fuel compositions comprising such emulsions.
Abstract:
A method comprises providing a bio-based feedstock; contacting the bio-based feedstock with a solvent in a hydrolysis reaction to form an intermediate stream comprising carbohydrates; contacting the intermediate stream with an apr catalyst to form a plurality of oxygenated intermediates, wherein a first portion of the oxygenated intermediates are recycled to form the solvent; and processing at least a second portion of the oxygenated intermediates to form a fuel blend.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.