Abstract:
A camshaft adjuster for a concentric camshaft assembly of an internal combustion engine is provided. The adjuster includes a stator that is connected to the timing gear, a rotor located within the stator and connected to the outer camshaft. The rotor includes a plurality of vanes that extend into spaces created between inwardly directed projections of the stator to define first and second sets of chambers on each side of the vanes. Front and rear sidewalls are connected to the stator and form the front and rear walls of the chambers. An outer cover connects to the stator to the inner camshaft. Radial loads acting on the timing gear are transmitted from the stator to the rotor and into the outer camshaft.
Abstract:
An assist spring is fixed at its one end to a vane rotor and at its other end to a spring hook provided at an outside of a housing 18. A signal plate is fixed to the vane rotor on a side of the spring hook. A cam angle sensor is provided at an outer peripheral side of the signal plate for detecting a rotational angle of the signal plate. The assist spring and the spring hook are arranged in an area, which is inside of an outer periphery of the signal plate in a radial direction, so that the cam angle sensor may not misidentify the assist spring and the spring hook and thereby exactly detects the rotational angle of the signal plate.
Abstract:
A synchronous drive apparatus includes first and a second rotors. The rotors have multiple teeth for engaging engaging sections of an elongate drive structure. A rotary load assembly couples to the second rotor. The elongate drive structure engages about the rotors. The first rotor drives and the second rotor is driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly presents a periodic fluctuating load torque when driven in rotation. The angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A cam sprocket according to the present invention includes a ring-shaped plate portion having external teeth along its outer circumference; a circular plate portion that is disposed at the radially inner region substantially parallel to the ring-shaped plate portion and at a level difference in axial direction to the ring-shaped plate portion, the circular plate portion being abuttable against one end face in axial direction of the cam shaft; and a tapered portion linking the circular plate portion to the ring-shaped portion at a radially intermediate region. The tapered portion is provided with a plurality of punched portions whose radially inner faces are provided with a partial circular arc shape so as to come into area contact with an outer circumferential surface at the one end face in axial direction of the cam shaft.
Abstract:
A camshaft assembly may include a first shaft, a second shaft, a first lobe and a second lobe. The second shaft may be coaxial with and rotatable relative to the first shaft. The first lobe may be fixed for rotation with the first shaft and adapted to open a first valve in communication with an engine combustion chamber. The first lobe may define a first valve opening region having a first angular extent. The second lobe may be fixed for rotation with the second shaft and adapted to open a second valve in communication with the engine combustion chamber. The second lobe may define a second valve opening region having a second angular extent greater than the first angular extent.
Abstract:
A cam drive tensioner for use with an engine includes a main body mounted to a component of the engine; a shoe movably mounted to the main body, for movement in a first direction; and two or more hydraulic chambers defined between the main body and the shoe, with the two or more hydraulic chambers being laterally spaced apart from each other in a second direction generally perpendicular to the first direction.
Abstract:
A controller of a variable valve device is configured to, before starting an internal combustion engine, set an operation angle varying mechanism to control an intake valve of the engine to have such an operation angle as to retard a valve close timing of the intake valve relative to a piston bottom dead center; define a given period from a instruction time when an instruction signal is fed to the controller for starting the engine to a time when a combustion of air/fuel mixture is actually commenced in the engine; and when, in the given period, a temperature representing the temperature of the engine is lower than a predetermined temperature, reduce the operation angle of the intake valve so as to bring the valve close timing of the intake valve near to the piston bottom dead center.
Abstract:
An engine is described having a crankcase, a liner and a head assembly. The crankcase is split along a plane defining a two part crankcase, where fluid passages are passing through only one of the crankcase portions, so as to not require crossing the split line. A connecting rod also includes a tapered end, and the piston has a complementary carrier receiving the connecting rod.
Abstract:
A chain case structure of an engine includes an oil pump is disposed in a chain case and driven by a crankshaft of the engine and an oil pump case. The oil pump case includes an oil strainer mounting portion, an oil suction passage communicating the oil strainer mounting portion with a pump chamber, and a chain guide portion protruding toward the one end in the crankshaft direction of the engine and extending along an outer periphery of a timing chain. The oil strainer mounting portion is disposed below the chain guide portion, the oil suction passage portion is expanded from a wall surface of the oil pump case toward the engine and extended toward the chain guide portion, and the oil strainer mounting portion and the chain guide portion are connected by the oil suction passage portion.
Abstract:
A decompression mechanism provided in a valve operating system configured to drive a valve for opening and closing a port, includes an accommodating member provided in the valve operating system; a decompression member which is accommodated in the accommodating member such that the decompression member is extendable and retractable, the decompression member being configured to extend from the valve operating system to press the valve to open the port in a compression stroke of the engine; and an insertion member which is inserted into the valve operating system, the insertion member being configured to be inserted through the accommodating member in a direction crossing a direction in which the decompression member is extendable and retractable.