Abstract:
A detector comprises a housing (1), a pyroelectric array sensor (2) mounted within the housing, a heater (4) associated with the pyroelectric array sensor, and control means (6) for varying the power supplied to the heater to control the temperature of the pyroelectric array sensor relative to the ambient temperature in order to minimise the rate of change of temperature of the pyroelectric array sensor and to keep a predetermined difference between the temperature of the pyroelectric array sensor and the ambient temperature.
Abstract:
A system for testing a lighting diode includes one or more nozzles, a probe, and a detector, where the lighting diode is operable to emit light in response to a current. The one or more nozzles direct a cooling fluid towards the lighting diode. The probe applies a current to the lighting diode. The detector detects the light emitted by the lighting diode in response to the current.
Abstract:
A process photometer which includes an insulated and a non-insulated compartment. The insulated compartment is maintained at a relatively constant, elevated temperature. The radiation source, a rotatable filter wheel, a radiation detector, and a means for converting analog output to a digital signal are among the components within the insulated compartment. The non-insulated compartment houses a power supply.
Abstract:
A free-space optically-coupled collimator for the efficient bidirectional transmission of an optical metrology beam emanating from a waveguide aperture of a waveguide optical transmission element, all contained in an isothermal nested enclosure, with the waveguide element mounted in a stress-free fashion. The focus of the collimator is set at the waveguide aperture of the waveguide optical transmission element, the optical axis of the collimator aligns with the optical metrology beam as it exits the waveguide aperture of the waveguide optical transmission element, and the numeric aperture of the collimator is equal to or larger than the numeric aperture of the optical metrology beam as it exits the waveguide aperture of the waveguide optical transmission element.
Abstract:
Methods and apparatus for measuring and/or controlling the temperature on the surface or inside of microchips are provided, including using thermally responsive polymers.
Abstract:
A method for measuring a spectrum of a sample by means of an infrared spectrometer is described, the spectrometer comprising at least one component whose operating behavior is influenced by at least one operating parameter which, in the event of a change, changes the operating behavior of the at least one component and thereby influences the spectrum to be measured, the method comprising detecting the at least one operating parameter at least once during the measurement of the spectrum, reckoning back the operating behavior of the at least one component in a manner dependent on the detected operating parameter to a predetermined reference value of the operating parameter, and further conducting at least one of the following steps: measuring the spectrum on the basis of the predetermined reference value of the operating parameter, correcting the spectrum on the basis of the predetermined reference value of the operating parameter.
Abstract:
Sensing in an elevated-temperature environment is provided using a sensor system having a sensor housing with an exterior wall with a window-support region having an outwardly facing external face, and a window through the window-support region of the exterior wall and affixed to the exterior wall. A sensor unit contained within the sensor housing receives an input signal through the window. A thermal-insulation layer is on the external face of the window-support region of the exterior wall at a location immediately adjacent to the window. The sensor system is operated in an environment wherein the window-support region of the exterior wall is heated to a temperature of greater than about 100null C. in the event that no thermal-insulation layer is present. In a typical application, the sensor system is attached to an aircraft such that the external face is in a forward-facing orientation, and the aircraft is operated such that the external face is heated by aerodynamic heating.
Abstract:
A radiometric standard detector responsive to infrared energy comprises an indium antimonide photovoltaic generator, a first mirror and a vacuum dewar including a cold finger and a window. The first mirror and photovoltaic generator are positioned in the dewar to form an optical energy trap. The generator is on the cold finger. A second mirror is external to the dewar. The window, both mirrors and the generator are positioned so a beam of the infrared energy is incident on the window and a portion of the infrared energy incident on the window is reflected from the window to the second mirror, then back to the window.
Abstract:
A system for measuring electromagnetic radiation originating from the hemhere corresponding to a solid angle of 2.pi. is provided wherein a highly sensitive low-inertia detector is disposed below a transmissive dome and wherein the chopped light detection method is utilized. There are provided above the transmissive dome two similarly or differently designed modulators which are in the shape of dome segments and which are fitted into each other. At least one of the modulators rotates about their common vertical axis or the modulators may both rotate about the common vertical axis, either at the same or a different speed in the same direction or in opposite directions.
Abstract:
A solar ray collecting device is comprised of a supporting base plate on which a large number of hexagonal recesses are provided and a large number of optical systems are arranged on each of said recesses. Each of said optical systems is made up of a hexagonal focusing lens of a dimension that is approximately the same as the hexagonal recesses and of a head-cut hexagonal pyramid which extends downward from the light collecting lens as an upper surface of said recess. An optical conductor which is a light-receiving surface is provided on the focus of said light collecting lens. Furthermore, the upper internal circumferential surface of the side wall forming said recess is so formed that it may be able to move freely on the surface of said hexagonal pyramid.