Abstract:
The number of detection channels of detecting sections is increased and the detecting sections are replaced easily and at low cost while suppressing loss in the quantity of returning light. Provided is a detection unit (5A) including a detector entrance port (75A) through which light in a predetermined optical form enters, a detector (57A) that detects at least a portion of the light entering through the detector entrance port (75A), and a detector exit port (65A) through which at least another portion of the light entering through the detector entrance port (75A) can exit in the same optical form.
Abstract:
An optical sensor system adapted to operate through a window of a vehicle includes a lens, a plurality of optoelectronic devices, and an optical device. The lens is configured to direct light from a field-of-view toward a focal plane. The plurality of optoelectronic devices are arranged proximate to the focal plane. The plurality of optoelectronic devices includes a first optoelectronic device operable to detect an image from a first portion of the field-of-view, and a second optoelectronic device operable to detect light from a second portion of the field-of-view distinct from the first portion. The optical device is configured to direct light from outside the field-of-view toward the second portion.
Abstract:
Provided are a light source apparatus and an inspection apparatus that can stably output a wavelength converted light beam. A light source apparatus includes a laser light source that generates a first fundamental light beam, at least one nonlinear optical crystal that generates a wavelength converted light beam using the fundamental light beam or a harmonic laser beam of the fundamental light beam as an incident light beam, a detector that detects the wavelength converted light beam, an acousto-optic modulator that is disposed in an optical path of the incident light beam in such a way that a zero-order light beam enters the nonlinear optical crystal, and a controller that controls an output intensity of the wavelength converted light beam according to a detection signal from the detector.
Abstract:
Demultiplexing systems and methods are discussed which may be small and accurate without moving parts. In some cases, demultiplexing embodiments may include optical filter cavities that include filter baffles and support baffles which may be configured to minimize stray light signal detection and crosstalk. Some of the demultiplexing assembly embodiments may also be configured to efficiently detect U.V. light signals and at least partially compensate for variations in detector responsivity as a function of light signal wavelength.
Abstract:
An electronic device may be provided with a display mounted in a housing. A color sensing ambient light sensor may measure the color of ambient light. The color sensing ambient light sensor may be mounted in alignment with an ambient light sensor window formed in an inactive area of the display. The color sensing ambient light sensor may be formed from detectors on a semiconductor substrate. The detectors may include detectors that have spectral sensitivity profiles matching those of color matching functions. The color sensing ambient light sensor may include an infrared light detector. Light redirecting structures such as a diffuser, prism film, negative lens film, or privacy film may be used in directing light into the ambient light sensor. The color sensing ambient light sensor may be calibrated by exposing the sensor to light sources of different types.
Abstract:
An electronic device (101, 200, 300, 400) is provided comprising optically transmissive electrical components (102, 103, 205-210, 303, 304, 405-410, 413-418) and optically trans missive computer structures such as boards (105, 201-203) or enclosures (302, 311-313). The components of the electronic device communicate through optical signals (212, 214, 309, 314, 422, 428) that propagate freely within the electronic device. That is, the optical signals are not guided and may or may not travel through the optically transmissive structures and components. This enables increased communication paths and reduced number of physical connections between various parts of the electronic device. The components may be placed in a single plane or in a three-dimensional layout and still communicate via the light signals. The invention enables an adaptable layout of an electronic device which is easily constructed.
Abstract:
A mobile terminal may be provided that includes a case having a through window formed in front of the case, an optical sensor arranged in the case toward the through window, a glass formed of an opaque material to cover the through window of the case, and a window layer disposed on a behind face of the glass, with a fine hole formed above the optical sensor.
Abstract:
An optical touch device with a detecting area includes light guide components, a light source module, a light detecting component and an auxiliary light guide component. Each light guide component includes a first light emitting surface. The light guide components includes a first light guide component and a second light guide component. The auxiliary light guide component and the light detecting component are disposed between two neighboring ends of the first light guide component and the second light guide component, and the light detecting component includes a light detecting end. The auxiliary light guide component is positioned between the light detecting component and the detecting area and includes a first light incidence surface, a second light incidence surface and a second light emitting surface connected between the first light incidence surface and the second light incidence surface. The optical touch device can effectively avoid the blind zone problem.
Abstract:
A method of patterning lithographic substrates that includes using a free electron laser to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus which projects the EUV radiation onto lithographic substrates. The method further includes reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop to monitor the free electron laser and adjust operation of the free electron laser accordingly, and applying variable attenuation to EUV radiation that has been output by the free electron laser in order to further control the power of EUV radiation delivered to the lithographic apparatus.
Abstract:
There is provided an image display apparatus including: a light source unit; at least one light modulation device configured to modulate light from the light source unit, and to emit a modulated light beam; and a sensor configured to receive diffracted light of the modulated light beam emitted from the at least one light modulation device, and to measure intensity of the modulated light.