Abstract:
The calibration/verification system and method for gas imaging infrared cameras standardizes the procedures to objectively and consistently check performance of gas imaging infrared cameras. This system includes a background board maintaining a uniform temperature, a target cell filled with a target compound and disposed in front of the background board, a reference cell filled with a reference compound and disposed in front of the background board, and an analyzer coupled to the camera that captures images of the gas cell and the reference cell. The analyzer compares the intensity difference and the temperature difference of rays passing through the target cell and reference cell to a reference relationship data of a quality control chart to determine whether the camera is in a working condition. The method is further extended to provide a quantitative measurement of a hydrocarbon plume from a gas imaging infrared camera.
Abstract:
The invention is directed to a laser adjustment device, a laser adjustment system and a laser adjustment method for an infrared thermometer. The laser adjustment device of the present invention includes a first adjustment seat and a second adjustment seat. The first adjustment seat includes a base, a fixing portion, a first adjustment portion, a second adjustment portion, and a first pivot portion. The second adjustment seat includes a connecting portion, a receiving portion and a second pivot portion. The first adjustment seat is pivoted about the first pivoting portion via the first adjustment portion, a first elastic member, and a first adjustment member. The second adjustment seat is pivoted about the second pivot portion via the second adjustment portion, a second elastic member, and a second adjustment member.
Abstract:
Method of diagnosing the state of signal-forming chains of a detector including an array of detection bolometers, each chain comprising a bolometer, a circuit of stimulation, and a circuit forming a signal according to said stimulation, including forming an image of a substantially uniform scene on the array; applying at least first and second stimulations to the chains; reading the formed signals; and for each chain in a predetermined set, defining a neighborhood of chains; calculating coefficients of a polynomial interpolating the values of signals formed by said chain; calculating, for each chain of the neighborhood, coefficients of a polynomial interpolating the values of signals formed by said neighborhood chain; calculating an average and standard deviation of said coefficients of the neighborhood chains or of the set of neighborhood chains and said chain; and diagnosing if said chain is defective using the coefficients and the calculated average and standard deviation.
Abstract:
Disclosed are an apparatus and method of detecting a temperature through a pyrometer in a non-contact manner, and an apparatus for processing a substrate using the apparatus, and more particularly, an apparatus and method of detecting a temperature, which precisely measures a temperature without any effect by humidity, and an apparatus for processing a substrate using the same. In an exemplary embodiment, an apparatus for detecting a temperature includes a humidity sensor configured to measure a humidity value, a temperature compensation database configured to store a temperature compensation value for each humidity value, and a pyrometer in which, assuming that a wavelength band including a transmittance limiting wavelength band as a wavelength band having a transmittance less than a first threshold value due to the humidity and a transmittance allowing wavelength band as a wavelength band having a transmittance more than a second threshold value due to the humidity is a wavelength band to be compensated, a non-contact temperature is calculated by adding a temperature compensation value corresponding to a humidity value detected by the humidity sensor to a temperature to be compensated calculated by measuring a wavelength intensity of the wavelength band to be compensated radiated from an object to be measured.
Abstract:
A method and apparatus measuring temperature of a steel sheet. A reference plate including a temperature controller is disposed opposite to the steel sheet. The reference plate temperature of the reference plate is measured by a contact thermometer. A radiation pyrometer is trained on the steel sheet at an angle such that alternate reflection of radiation energy by the reference plate and the objective steel sheet occurs once or twice. The radiosity of the steel sheet is measured by the radiation pyrometer. A temperature obtained by converting the radiosity into a temperature of a blackbody that radiates energy equivalent to the radiosity is used as a radiosity temperature. The temperature controller executes a control operation to make the temperature of the reference plate coincide with the radiosity temperature. The radiosity temperature is used as the temperature of the steel sheet.
Abstract:
Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.
Abstract:
A method detects a loss of calibration of a thermal imaging radiometer including an array of imaging microbolometers and a gauge microbolometer. The detection method includes applying a first and a second electrical stimulation to the gauge microbolometer to bring it to a first and a second predetermined temperature, followed by measuring an ohmic responsivity of the gauge microbolometer that is representative of a difference between the first and second electrical stimulations. The measured ohmic responsivity is compared with a reference ohmic responsivity, such that a loss of calibration is signaled whenever the measured and reference ohmic responsivities differ by more than a predetermined threshold. A correction method includes steps of the detection method, to yield a corrected voltage response function for each imaging microbolometer. Advantageously, the methods involve probing the electrical response of the gauge microbolometer without requiring thermoregulated blackbody calibrations sources.
Abstract:
In an evaluation device for determining a measurement value at a component, power is supplied to the component during readout of the measurement value. A controller serves to determine the power supplied to the component during the readout. The measurement value determined by the reader is corrected by a compensator while using the power determined by the controller, so as to obtain a corrected measurement value freed from any effects caused by the power supplied.
Abstract:
Systems and methods directed to calibration techniques for infrared cameras are disclosed for some embodiments. For example, a method of determining infrared sensor calibration information, in accordance with an embodiment, includes performing a calibration operation on an infrared sensor to obtain calibration information, wherein the infrared sensor is not within an infrared camera core, and storing the calibration information.
Abstract:
An infrared imaging system having functionality for maintaining image quality in the presence of temperature drift of the system. Such functionality is applied repetitively to maintain image quality of a target scene, yet without continuous actuation of a shutter of the system. The functionality of the imaging system results from implementing an imager algorithm. In use, the imager algorithm functions with a calibration curve created for the imaging system, with the curve comprising a plot of system output versus target scene temperature.