Abstract:
A compact device for generating X-rays by scattering includes a means for producing a beam of electrons, which comprises a grid of wires arranged in a useful scattering cone, so that the beam of electrons encounters at least one of the wires of the wire grid.
Abstract:
A collector assembly includes a first collector mirror for reflecting radiation from a radiation emission point, such as an extreme ultraviolet radiation emission point, to an intermediate focus from where the radiation is used in the lithography apparatus for device manufacture. A second collector mirror, forward of the radiation emission point, collects additional radiation, reflecting it back to a third mirror and from there to the intermediate focus. The mirrors may allow radiation to be collected with high efficiency and without increase in the etendue. The collector assembly may reduce or remove non-uniformity in the collected radiation, for instance arising from obscuration of collected radiation by a laser beam stop used to prevent laser excitation radiation from entering the lithographic apparatus.
Abstract:
An analysis method for use in a radiation imaging apparatus employing intensity information of interference fringes of radiation rays that have passed through a detected object includes the steps of generating first phase information of the detected object wrapped into a range of 2π from the intensity information of the interference fringes; generating information on an absorption intensity gradient of the detected object from the intensity information of the interference fringes; generating a weighting function on the basis of an absolute value of a gradient in the information on the absorption intensity gradient; and generating second phase information by unwrapping the first phase information by using the weighting function.
Abstract:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Abstract:
An x-ray optical system for producing high intensity x-ray beams. The system includes an optic with a surface formed by revolving a defined contour around a revolving axis that is different than the geometric symmetric axis of the optic. Accordingly, the system may use a source that has a circular emission profile or a large source to provide increased flux to a sample.
Abstract:
A system for x-ray optical alignment. The system includes an x-ray source, an optic, a collimation element, and alignment sensors. The x-ray source generates an x-ray beam that is directed by the optic at a sample. The collimation element is located between the optic and the sample to define the profile of the x-ray beam. The sensors receive the x-ray beam from the optic and generated signal indicative of the system alignment. The sensors may be located on a surface of the collimation element facing the optic. The inner edge of the sensors may be located at equal intervals radially about the collimation element and may form an aperture having a symmetric shape.
Abstract:
A reflective resin sheet is bonded to one face of a supporting substrate transmitting a radiation ray and a resin sheet of the same material as that of the reflective resin sheet to the other face of the supporting substrate. A phosphor layer converting a radiation ray into visible light is formed additionally on the reflective resin sheet formed on one face of the supporting substrate. The phosphor layer is enclosed with an additional moisture-proof layer and the reflective resin sheet. It is possible to obtain a scintillator panel higher in sensitivity characteristics, stabilized in quality and more cost-effective by placing the reflective resin sheet between the supporting substrate and the phosphor layer.
Abstract:
A device for adjusting optical elements, in particular, for X-ray analysis, comprising a holding device (2) for receiving the optical element and at least two adjusting units at least one of the two longitudinal ends of the holding device (2), wherein the adjusting units each comprise one plunger (6, 6a, 6b, 6c, 6d), characterized in that each adjusting unit comprises a rotatably disposed adjusting ring (4, 4a, 4b, 4c, 4d) with an eccentric recess, and the optical element is mechanically coupled to the inner surfaces (7) of the adjusting rings (4, 4a, 4b, 4c, 4d) via the plungers (6, 6a, 6b, 6c, 6d). The adjusting device is compact, can be flexibly used and provides simple adjustment of the optical element.
Abstract:
A system for observing the internal features of an object, such that the object's internal absorption, refraction, reflection and/or scattering properties are visualized, is disclosed. An embodiment may include one or more beams of penetrating radiation, an object with internal features to be imaged, a single or an array of radiation optics, and a detection system for capturing the resultant shadowgraph images. The beam(s) of radiation transmitted through the object typically originate from a line-shaped source(s), which has high spatial purity along the narrow axis, and low spatial purity in the perpendicular, long axis. In the long axis, radiation optic(s) capture and focus diverging rays exiting from the object to form a high resolution image of the object, without which optic(s) the shadowgraph would have blurring in this axis. Such shadowgraph is naturally well defined in the opposite axis of narrow beam origin and can reveal an object's refraction, reflection and/or scattering properties along that axis. An embodiment may also include discriminators (stops, phase shifters, analyzer crystals, etc.) in the beam exiting the object. An embodiment may also include mechanisms for scanning whereby a two-dimensional or three-dimensional image of a large object is made possible. An embodiment may also include an image of an object's internal features being derived from an analysis of the radiation and/or radiation waveform exiting the object.
Abstract:
A system for x-ray optical alignment. The system includes an x-ray source, an optic, a collimation element, and alignment sensors. The x-ray source generates an x-ray beam that is directed by the optic at a sample. The collimation element is located between the optic and the sample to define the profile of the x-ray beam. The sensors receive the x-ray beam from the optic and generated signal indicative of the system alignment. The sensors may be located on a surface of the collimation element facing the optic. The inner edge of the sensors may be located at equal intervals radially about the collimation element and may form an aperture having a symmetric shape.