Abstract:
The object of the present invention is a mount for a rotating target, roughly disk-shaped and perforated at its center. The mount is made of a material which a structurally hardened nickel-based superalloy. The mount is disk-shaped with a narrower area at its periphery, and the narrow peripheral area and the thick area surrounding the central orifice are separated by a discontinuous area whose slope is between 3° and 10°, with the thickness ratio between the narrow peripheral area and the thick area surrounding the central orifice being between 1.5 and 3. The superalloy is an Inconel that has undergone a structural hardening treatment after machining. At least one of the mount's surfaces is coated with an emissive coating used to discharge heat through thermal radiation.
Abstract:
An X-ray target assembly includes a substrate, a target supported by the substrate adapted to generate X-rays when impinged by an electron beam, and an enclosure over the target providing a volume for the target. The enclosure is made of a material substantially transparent to electrons. The volume is substantially vacuum or filled with an inert gas.
Abstract:
An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly.
Abstract:
The present disclosure describes a self-contained irradiator comprising at least one X-ray source inside a shielded enclosure, the one or more sources each operable to emit X-ray flux across an area substantially equal to the proximate facing surface area of material placed inside the enclosure to be irradiated. The irradiator may have multiple flat panel X-ray sources disposed, designed or operated so as to provide uniform flux to the material being irradiated. The advantages of the irradiator of the present disclosure include compactness, uniform flux doses, simplified thermal management, efficient shielding and safety, the ability to operate at high power levels for sustained periods and high throughput.
Abstract:
A method and system for determining the bone mineral density of a body extremity. An image of a body extremity is acquired using a mammography x-ray system whereby a bone mineral density can be performed on the image. The system for determining the bone mineral density of a body extremity includes: a support for supporting the body extremity; a detector for capturing an image of the body extremity; and an x-ray source adapted to project an x-ray beam through the body extremity toward the detector, the x-ray source having a voltage of no more than about 45 kVp and having a target/filter combination of rhodium/rhodium, molybdenum/molybdenum, molybdenum/rhodium, or tungsten/rhodium.
Abstract:
A target assembly for generating x-rays includes a target substrate, and an emissive coating applied to a portion of the target substrate, the emissive coating comprising one or more of a carbide and a carbonitride.
Abstract:
The present invention aims to suppress calorific value and prolong a lifetime of an apparatus that generates soft X-rays. Thus, the present invention provides a static elimination apparatus that includes an emitter as an electron emitting portion and a target, in which a thin film formed of diamond particles each having a particle size of 2 nm to 100 nm is formed on a surface of the emitter. The thin film has a diamond XRD pattern in an XRD measurement and, in a Raman spectroscopic measurement, a ratio of an sp3 bonding component to an sp2 bonding component within the film of 2.5 to 2.7:1. When a DC voltage is applied to the emitter, with a threshold electric field intensity of 1 V/μm or less, electrons larger in number than the prior art are emitted from the emitter and moreover, a temperature of the emitter is hardly increased, thus obtaining a longer lifetime.
Abstract translation:本发明旨在抑制产生软X射线的装置的发热量并延长其使用寿命。 因此,本发明提供了一种静电消除装置,其包括作为电子发射部分的发射体和靶,其中形成有粒径为2nm至100nm的金刚石颗粒的薄膜在其表面上形成 发射器。 该薄膜在XRD测量中具有菱形XRD图案,并且在拉曼光谱测量中,膜中的sp3键合成分与sp2键合成分的比例为2.5〜2.7:1。 当发射极施加直流电压时,阈值电场强度为1 V / mum以下,从发射极发射的数量比现有技术大,而发射极的温度几乎不增加,因此, 获得更长的使用寿命。
Abstract:
An x-ray anode for use in an x-ray tube is provided. The x-ray anode includes a substrate material, a target material, and one or more graded coefficient of thermal expansion material layers. The target material is coupled to the one or more graded coefficient of thermal expansion material layers and the graded coefficient of thermal expansion material layers are coupled to the substrate material. A method of making the x-ray anode is also provided.
Abstract:
An x-ray anode has an emission layer and a carrier with carrier material to support the emission layer. The carrier material is a metallized carbon fiber material with a portion in which the fibers are specifically directed. A high heat dissipation from the emission layer and a coefficient of heat expansion of the carrier that is advantageous for bonding with the emission layer are achieved.
Abstract:
A system for generation of an x-ray image with high resolution has an x-ray generator that produces an x-ray focal spot with a number of intensity maxima. The partial x-ray images corresponding to each of the intensity maxima are subsequently reconstructed into an x-ray image of high resolution using an algorithm taking into account the spatial distribution.