Abstract:
There is proposed an apparatus for doping a material to be doped by generating plasma (ions) and accelerating it by a high voltage to form an ion current is proposed, which is particularly suitable for processing a substrate having a large area. The ion current is formed to have a linear sectional configuration, and doping is performed by moving a material to be doped in a direction substantially perpendicular to the longitudinal direction of a section of the ion current.
Abstract:
A mass filter for an ion beam system includes at least two stages and reduces chromatic aberration. One embodiment includes two symmetrical mass filter stages, the combination of which reduces or eliminates chromatic aberration, and entrance and exit fringing field errors. Embodiments can also prevent neutral particles from reaching the sample surface and avoid crossovers in the beam path. In one embodiment, the filter can pass a single species of ion from a source that produces multiple species. In other embodiments, the filter can pass a single ion species with a range of energies and focus the multi-energetic ions at the same point on the substrate surface.
Abstract:
This invention provides a monochromator for reducing energy spread of a primary charged particle beam in charged particle apparatus, which comprises a beam adjustment element, two Wien-filter type dispersion units and an energy-limit aperture. In the monochromator, a double symmetry in deflection dispersion and fundamental trajectory along a straight optical axis is formed, which not only fundamentally avoids incurring off-axis aberrations that actually cannot be compensated but also ensures the exit beam have a virtual crossover which is stigmatic, dispersion-free and inside the monochromator. Therefore, using the monochromator in SEM can reduce chromatic aberrations without additionally incurring adverse impacts, so as to improve the ultimate imaging resolution. The improvement of the ultimate imaging resolution will be more distinct for Low-Voltage SEM and the related apparatuses which are based on LVSEM principle, such as the defect inspection and defect review in semiconductor yield management. The present invention also provides two ways to build a monochromator into a SEM, one is to locate a monochromator between the electron source and the condenser, and another is to locate a monochromator between the beam-limit aperture and the objective. The former provides an additional energy-angle depending filtering, and obtains a smaller effective energy spread.
Abstract:
An implantation system includes an ion extraction plate having a set of apertures configured to extract ions from an ion source to form a plurality of beamlets. A magnetic analyzer is configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to a principle axis of the beamlets. A mass analysis plate includes a set of apertures wherein first ion species having a first mass/charge ratio are transmitted through the mass analysis plate and second ion species having a second mass/charge ratio are blocked by the mass analysis plate. A workpiece holder is configured to move with respect to the mass analysis plate in a second direction perpendicular to the first direction, wherein a pattern of ions transmitted through the mass analysis plate forms a continuous ion beam current along the first direction at the substrate.
Abstract:
An ion beam apparatus and a method for providing an energy-filtered primary ion beam are described. Therein, a primary ion beam having an asymmetric first energy distribution is generated by means of an ion source. The primary ion beam is energy filtered using, for example, a retarding lens.
Abstract:
There is proposed an apparatus for doping a material to be doped by generating plasma (ions) and accelerating it by a high voltage to form an ion current is proposed, which is particularly suitable for processing a substrate having a large area. The ion current is formed to have a linear sectional configuration, and doping is performed by moving a material to be doped in a direction substantially perpendicular to the longitudinal direction of a section of the ion current.
Abstract:
An ion beam device is described. The ion beam device includes an ion beam source for generating an ion beam, the ion beam being emitted along a first axis, an aperture unit adapted to shape the ion beam, and an achromatic deflection unit adapted to deflect ions of the ion beam having a predetermined mass by a deflecting angle. The achromatic deflection unit includes: an electric field generating component for generating an electric field, and a magnetic field generating component for generating a magnetic field substantially perpendicular to the electric field. The device further includes a mass separation aperture adapted for blocking ions with a mass different from the predetermined mass and for allowing ions having the predetermined mass to trespass the mass separator, and an objective lens having a second optical axis, wherein the second optical axis is inclined with regard to the first axis.
Abstract:
Disclosed herein are apparatus and methods for selectively depositing molecular ions on nanoscale substrates such as carbon nanotube arrays using electrospray ionization.
Abstract:
A sample transfer device is provided which can insert to a charged particle beam apparatus a sample to be observed and analyzed under irradiation of a charged particle beam while suppressing to a minimum the time to expose the sample to the atmospheric environment. The sample transfer device for transferring the sample to be observed and analyzed by irradiating the charged particle beam comprises an expansible hollow member capable of accommodating a sample holder mounting the sample, a fixing member for fixing the sample holder within the expansible hollow member, and a sealing member communicating with the interior of the expansible hollow member to open/close an opening through which the sample holder passes.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.