Abstract:
Disclosed are an apparatus and a method for saving energy while increasing the conveying speed in vacuum coating plants consisting of a series of sputtering segments (3) and gas separation segments (2) along with a continuous substrate plane (1). Said apparatus has the following features: a) each of the sputtering segments (3) consists of a tank tub (12) inside which a conveying device (11) is located; the flange (6) of the tank is positioned in the immediate vicinity above the substrate plane (1); a cathode bearing block (5), along with targets (8) and gas inlet ducts (10), is located in the tank cover (4) in the immediate vicinity of the substrate together with splash guards (9); b) in the region of the substrate plane (1), the gas separation segments (2) are provided with a tunnel cover (14) that extends along the entire length of the gas separation segment (2); c) sputtering segments (3) and/or gas separation segments (2) are evacuated using one or more vacuum pumps (15), and the air pumped in said process is trapped in an air reservoir (25) having an adjustable volume.
Abstract:
The present invention is a manufacturing method for manufacturing a magnetoresistive element, including a first step for oxidizing or reducing a magnetic film constituting the magnetoresistive element and a metal oxidation film constituting the magnetoresistive element, and a second step performed after the first step, wherein in the second step, in a case where the magnetic film constituting the magnetoresistive element and the metal oxidation film constituting the magnetoresistive element are oxidized, the oxidized magnetic film constituting the magnetoresistive element or the oxidized metal oxidation film constituting the magnetoresistive element is selectively reduced, and in a case where the magnetic film constituting the magnetoresistive element and the metal oxidation film constituting the magnetoresistive element are reduced, the reduced magnetic film constituting the magnetoresistive element or the reduced metal oxidation film constituting the magnetoresistive element is selectively oxidized.
Abstract:
In one embodiment, a surface having a sealing groove formed therein. The sealing groove is configured to accept an elastomeric seal. The sealing groove includes a first portion having a full dovetail profile and at least on a second portion having a half dovetail profile.
Abstract:
Methods are disclosed for depositing material onto and/or etching material from a substrate in a surface processing tool having a processing chamber, a controller and one or more devices for adjusting the process parameters within the chamber. The method comprises: the controller instructing the one or more devices according to a series of control steps, each control step specifying a defined set of process parameters that the one or more devices are instructed to implement, wherein at least one of the control steps comprises the controller instructing the one or more devices to implement a defined set of constant process parameters for the duration of the step, including at least a chamber pressure and gas flow rate through the chamber, which duration is less than the corresponding gas residence time (Tgr) of the processing chamber for the step.
Abstract:
A plasma processing apparatus includes: a process chamber which accommodates a substrate to be processed; a lower electrode disposed in the process chamber; an upper electrode including an electrode plate that is detachable and discharges a process gas inside the form of shower into the process chamber; a gas supply unit including a central pipe and a edge pipe for supplying the process gas to the upper electrode; a first high frequency power source which applies high frequency power for plasma generation to the lower electrode; pressure indicators which detect pressures inside gas supply pipes; and a controller which measures a degree of consumption of the electrode plate based on the pressures detected by the pressure indicators and calculates a variation in process rate resulting due to the consumption of the electrode plate to adjust process conditions to resolve the variation in process rate.
Abstract:
A plasma processing apparatus includes a processing container that defines a processing space, a gas supply unit provided on a sidewall of the processing container and configured to supply gas to the processing space, a dielectric member having a facing surface that faces the processing space, and an antenna provided on a surface opposite to the facing surface of the dielectric member and configured to radiate microwaves that turn the gas into plasma to the processing space through the dielectric member. The gas supply unit includes a transport hole transporting the gas to a position where the gas does not reach the processing space in the inside of the sidewall of the processing container and an injection hole communicated to the transport hole and configured to inject the gas transported to the position into the processing space. The injection hole has a diameter larger than that of the transport hole.
Abstract:
A plasma processing system and method includes a processing chamber, and a plasma processing volume included therein. The plasma processing volume having a volume less than the processing chamber. The plasma processing volume being defined by a top electrode, a substrate support surface opposing the surface of the top electrode and a plasma confinement structure including at least one outlet port. A conductance control structure is movably disposed proximate to the at least one outlet port and capable of restricting an outlet flow through the at least one outlet port to a first flow rate and capable of increasing the outlet flow through the at least one outlet port to a second flow rate, wherein the conductance control structure restricts the outlet flow rate moves between the first flow rate and the second flow rate corresponding to a selected processing state set by the controller during a plasma process.
Abstract:
A pressure control valve assembly of a plasma processing chamber in which semiconductor substrates are processed includes a housing having an inlet, an outlet and a conduit extending between the inlet and the outlet, the inlet adapted to be connected to an interior of the plasma processing chamber and the outlet adapted to be connected to a vacuum pump which maintains the plasma processing chamber at desired pressure set points during rapid alternating phases of processing a semiconductor substrate in the chamber. A fixed slotted valve plate having a first set of parallel slots therein is fixed in the conduit such that gasses withdrawn from the chamber into the conduit pass through the first set of parallel slots. A movable slotted valve plate having a second set of parallel slots therein is movable with respect to the fixed slotted valve plate so as to adjust pressure in the chamber.
Abstract:
A plasma processing device may include a plasma processing chamber, a plasma electrode assembly, a wafer stage, a plasma producing gas inlet, a plurality of vacuum ports, at least one vacuum pump, and a multi-port valve assembly. The multi-port valve assembly may comprise a movable seal plate positioned in the plasma processing chamber. The movable seal plate may comprise a transverse port sealing surface that is shaped and sized to completely overlap the plurality of vacuum ports in a closed state, to partially overlap the plurality of vacuum ports in a partially open state, and to avoid substantial overlap of the plurality of vacuum ports in an open state. The multi-port valve assembly may comprise a transverse actuator coupled to the movable seal plate and a sealing actuator coupled to the movable seal plate.
Abstract:
Provided are a substrate manufacturing method and a substrate manufacturing apparatus used therefor. The substrate manufacturing method includes providing a substrate having a mask film into a chamber. A plasma reaction is induced in the chamber. A first gas and a second gas are alternately provided into the chamber to etch the substrate. Each of the first and second gases is provided into the chamber at a stabilized feed pressure including a pressure fluctuation profile comprising a square wave shape.