Abstract:
Low-pressure mercury vapor discharge lamp comprises a light-transmitting discharge vessel (10) enclosing, in a gastight manner, a discharge space (13) provided with a filling of mercury and a rare gas. The discharge vessel comprises discharge means (20a; 20b) for maintaining a discharge in the discharge space. The discharge vessel is provided with a container comprising an amalgam (2). The container is provided with releasing means (4) for the controlled release of mercury vapor from the amalgam. The releasing means is open during lamp operation and is substantially closed when, during lamp operation, the temperature of the amalgam becomes higher than a pre-determined temperature. Preferably, the pre-determined temperature corresponds to a temperature of a range of temperatures at which the mercury-vapor pressure above the amalgam is relatively stable.
Abstract:
An improved CCFL gas discharge device that uses a principal amalgam alone to control the mercury vapor pressure inside its glass envelope so that it can generate optimum light output while being enclosed inside a light-transmitting container with high ambient temperature. Another embodiment of the present invention uses a fast start circuitry in the electronic driver that allows the CCFL to reach optimum intensity within two minutes of start in case when a high-melting point principal amalgam is used. Still another embodiment of the present invention uses a complimentary pair of PNP and NPN transistor to reduce the complexity of the electronic driver so that it uses fewer components and is more compact.
Abstract:
Low-pressure mercury vapor discharge lamp comprises a light-transmitting discharge vessel (10) enclosing, in a gastight manner, a discharge space (13) provided with a filling of mercury and a rame gas. The discharge vessel comprises discharge means (20a; 20b) for maintaining a discharge in the discharge space. The discharge vessel is provided with a container comprising an amalgam (2). The container is provided with releasing means (4) for the controlled release of mercury vapor from the amalgam. The releasing means is open during lamp operation and is substantially closed when, during lamp operation, the temperature of the amalgam becomes higher than a pre-determined temperature. Preferably, the predetermined temperature corresponds to a temperature of a range of temperatures at which the mercury-vapor pressure above the amalgam is relatively stable.
Abstract:
A mercury-heating device is provided. The device is disposed on a substrate of a planar light source. The heating device includes a patterned electrode and a container. The patterned electrode is formed on the substrate and coupled to an external power source. The container, which covers over the patterned electrode, is a dielectric layer formed on the substrate. The container is used for containing mercury alloy or liquid mercury.
Abstract:
A compact fluorescent lamp comprises a fluorescent tube having a helical portion on at least a part thereof and turned down in the middle, a pair of tube ends thereof each provided with a discharge electrode, the pair of tube ends juxtaposing with each other in the same direction, a holder for holding the tube ends so as that the fluorescent tube is supported at the one side thereof, a lighting device for supplying a high-frequency power to the fluorescent tube, the lighting device comprising a circuit board facing the other side of the holder and circuit elements mounted on the circuit board, a cover for accommodating the lighting device the cover opening at both ends and holding the holder at the one opening end, and a cap fixed to the other opening end of the cover for supplying a commercial power to the lighting device by being mounted to a socket of luminaire, wherein a thin tube is protruded from at least one of the tube ends of the fluorescent tube in the cover, and the thin tube is communicated with the fluorescent tube.
Abstract:
An electrodeless fluorescent lamp (10) having a burner (20), a ballast housing (30) containing a ballast (40) and a screw base (50) for connection to a power supply. A reentrant cavity (60) is formed in the burner (20) and an amalgam receptacle (70) containing amalgam (75) is formed as a part of the reentrant portion and in communication with the burner (20). A housing cap (80), formed of a suitable plastic, connects the burner (20) to the ballast housing (30) and a suitable adhesive (31) fixes the burner to the housing cap (80). An EMI cup (90) is formed as an insert to fit into the ballast housing (30), which also is formed of a suitable plastic, and has a bottom portion (100) and an EMI cap (110) with an aperture (120) therein closing an upper portion (140). The EMI cup (90) and the EMI cap (110) are preferably formed from 0.5 mm brass. The amalgam receptacle (70) extends through the aperture (120) and into the cup (90). For a fixed amalgam position, changing the aperture size allows adjustment of the amalgam tip temperature, and thus, allows control of the system lumen output, efficacy, CCT and CRI, all of which are dependent on the amalgam temperature.
Abstract:
A compact self-ballasted fluorescent lamp (10) which is equivalent to a typical light bulb is provided The self-ballasted fluorescent lamp (10) includes a cover (14), a lighting circuit (16), an arc tube (18), a base (12) and a globe (17) and formed into a shape whose outline dimensions are nearly identical to the standard dimensions of a typical light bulb. The arc tube (18) is comprised of a plurality of U-shaped bent bulbs (31) which have an inner tube diameter ranging from 6 to 9 mm and arranged in parallel with one another. Having a bulb height ranging from 50 to 60 mm and a discharge path from 200 to 300 mm long, the arc tube (18) is designed such that the total luminous flux is not less than 700 lm with a lamp efficiency of not less than 60 lm/W when the lamp is lit at the lamp power of 7 to 15 W. An envelope (19) comprising the cover (14) and the globe (17) has a height ranging from 110 to 125 mm, including the height of the base (12).
Abstract:
An inert gas supplementing device for a fluorescent light includes a tube having a closed end and an open end adapted to communicate with a light tube of the fluorescent light. A porous stop is received in the tube in an air-tight manner. An inert gas is received in an area enclosed by the closed end of the tube and the porous stop. The inert gas is able to seep through the porous stop and flow to the fluorescent light to supplement inert gas in the fluorescent light.
Abstract:
An improved method is described for the manufacture of mercury dispenser devices to be used in fluorescent lamps, of the type wherein the dispenser material (2) is contained inside a metal tube (1), these dispensers providing a more uniform distribution of mercury, with lower fluctuations from one device to the other. This is obtained by a method according to which a tubular metal container (1′) having a larger diameter than the final one (1), after the filling thereof with said dispenser material (2) is passed between at least two pairs of rollers (3, 3′, 4, 4′) whose axes of rotation are parallel to each other and perpendicular to the advancing direction (X-X′) of the tubular container (1), until a reduction of the cross-section of the latter to the desired value is obtained, and is finally cut to the right size into the single dispenser elements
Abstract:
A device for retaining a mercury source in the discharge space of a low-pressure discharge lamp is disclosed. The mercury source retaining device comprises a holder, which has an inner space communicating with the discharge space and a receiver opening for receiving a mercury source. The retaining device further comprises resilient clamping means for clamping the holder in a tubular space segment of the discharge space and resilient retaining means at least partially blocking the receiver opening. The resilient retaining means are adapted for allowing a passage of the mercury source in a direction towards the inner space of the holder, but block the movement of the mercury source through the receiver opening in a direction out of the holder.