Abstract:
Channel state feedback is provided from a UE to a base station as a first, detailed or a second, less detailed type of channel state feedback information. Initially it is determined whether the UE has received an uplink grant from the base station or not. If the UE has received an uplink grant, a first type of channel state feedback information is transmitted to the base station on the granted resource. If, however, the UE has not received an uplink grant, a second type of channel state feedback information is transmitted to the base station. Different types of channel state feedback information enables a UE and an associated base station to use available resources more efficiently, when requesting for and delivering channel state feedback information.
Abstract:
It is possible to improve the CQI reception performance even when a delay is caused in a propagation path, a transmission timing error is caused, or a residual interference is generated between cyclic shift amounts of different ZC sequences. For the second symbol and the sixth symbol of the ACK/NACK signal which are multiplexed by RS of CQI, (+, +) or (−, −) is applied to a partial sequence of the Walsh sequence. For RS of CQI transmitted from a mobile station, + is added as an RS phase of the second symbol and − is added as an RS phase of the sixth symbol. A base station (100) receives multiplexed signals of ACK/NACK signals and CQI signals transmitted from a plurality of mobile stations. An RS synthesis unit (119) performs synthesis by aligning the RS phase of CQI.
Abstract:
Embodiments of the present invention disclose a CSI reporting method and a device, and the method may include: receiving subband size configuration information sent by a base station, where the subband size configuration information includes a user equipment-specific subband size configuration index; determining a subband size according to the user equipment-specific subband size configuration index; determining CSI, where the CSI reflects transmission on at least one subband, and the subband is determined according to the subband size; and sending the CSI to the base station. According to the embodiments of the present invention, performance of a communications system can be improved.
Abstract:
A method and an apparatus are provided for transmitting Channel State Information (CSI) having a reporting mode and being transmitted from a User Equipment (UE) over a PUSCH transmission in an Uplink (UL) cell associated with a Downlink (DL) cell in response to the UE receiving a Downlink Control Information (DCI) format that includes a CSI request field indicating CSI transmission corresponding to one of a plurality of CSI processes associated with measurements of respective reference signals. The method includes obtaining, from the CSI request field, an indication of a CSI process set for a CSI transmission; and transmitting the CSI for the CSI process set indicated by the CSI request field, wherein the CSI request field includes 2 bits of a first CSI process set having a first set of interpretations.
Abstract:
Channel state feedback is provided from a UE to a base station as a first, detailed or a second, less detailed type of channel state feedback information. Initially it is determined whether the UE has received an uplink grant from the base station or not. If the UE has received an uplink grant, a first type of channel state feedback information is transmitted to the base station on the granted resource. If, however, the UE has not received an uplink grant, a second type of channel state feedback information is transmitted to the base station. Different types of channel state feedback information enables a UE and an associated base station to use available resources more efficiently, when requesting for and delivering channel state feedback information.
Abstract:
It would be to provide a method which will work with future versions of LTE-A, be backwards compatible and alleviate interference to signals for basic system operation.The method includes generating one or more Reference Signals associated with the one or more Channel Quality Indicators, and includes mapping the one or more Channel Quality Indicator-Reference Signals to the last symbol of the second slot of the one or more subframes.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.
Abstract:
Systems, methods, and instrumentalities for a WTRU to perform channel estimation and/or noise estimation are provided. The techniques described herein may be used to perform channel estimation and/or noise estimation that meet certain performance and latency goals while utilizing a lower cost design than previous channel/noise estimation techniques. For example, the channel estimation/noise estimation techniques described herein may be implemented using less memory (e.g., less memory for storing filter coefficients) while still achieving the desired latency and performance goals. The techniques described herein may be implemented by any WTRU and/or by a WTRU specifically designed to be low-cost.
Abstract:
A method for transmitting channel status information (CSI) via uplink in a wireless communication system includes transmitting a first precoding matrix indicator (PMI) and a second PMI at a subframe. A subsampled codebook for each of a precoding codebook for Rank-1 and a precoding codebook for Rank-2 is determined based on at least the first PMI or the second PMI. In case of the Rank-1 or the Rank-2, a number of elements for the first PMI is 8.
Abstract:
Selection of a suitable MCS improves throughput without increasing the number of pieces of control information. Provided is a terminal apparatus including: a control information extraction unit 703 that receives control information for requesting a CSI notification; a CQI determination unit 707 that calculates CQI according to the control information and calculates a CQI index by any CQI table of a first CQI table and a second subframe from the CQI; and a UL transmission unit 711 that performs uplink transmission of the CQI index to a base station apparatus, in which, in a case where the control information is received on a first downlink subframe set, the CQI determination unit 707 generates the CQI index using the first CQI table, and in which, in a case where the control information is received on a second downlink subframe set, the CQI determination unit 707 generates the CQI index using the second CQI table.