Abstract:
Disclosed is a printed circuit board, including a base member, an insulating layer formed on each of both surfaces of the base member so that the surfaces of the base member are flattened, a circuit layer formed on the insulating layer, and a via for connecting the circuit layer formed on one surface of the base member with the circuit layer formed on the other surface of the base member. A method of manufacturing the printed circuit board is also provided.
Abstract:
A display device comprises a metallic wiring formed on an insulating substrate, an inorganic insulating film formed on the metallic wiring, an organic resin film formed on the inorganic insulating film, a transparent conductive film formed in a portion on the metallic wiring where the inorganic insulating film and the organic resin film are removed, a connection terminal formed in a region for mounting a driving IC external to the display region on the insulating substrate, and a bump of the driving IC connected to the connection terminal by an anisotropic conductive film in order to supply a signal to the display region. The region for mounting a driving IC includes a region where the inorganic insulating film and the organic resin film are formed on the metallic wiring and a region where the inorganic insulating film and the organic resin film are removed from the metallic wiring.
Abstract:
A printed circuit board including a conductor portion, an insulating layer formed over the conductor portion, a thin-film capacitor formed over the insulating layer and including a first electrode, a second electrode and a high-dielectric layer interposed between the first electrode and the second electrode, and a via-hole conductor structure formed through the second electrode and insulating layer and electrically connecting the second electrode and the conductor portion. The via-hole conductor structure has a first portion in the second electrode and a second portion in the insulating layer. The first portion of the via-hole conductor structure has a truncated-cone shape tapering toward the conductor portion.
Abstract:
Disclosed is a printed circuit board, including a base member, an insulating layer formed on each of both surfaces of the base member so that the surfaces of the base member are flattened, a circuit layer formed on the insulating layer, and a via for connecting the circuit layer formed on one surface of the base member with the circuit layer formed on the other surface of the base member. A method of manufacturing the printed circuit board is also provided.
Abstract:
A multilayer printed wiring board 10 includes: a mounting portion 60 on the top surface of which is mounted a semiconductor element that is electrically connected to a wiring pattern 32, etc.; and a capacitor portion 40 having a high dielectric constant layer 43, formed of ceramic and first and second layer electrodes 41 and 42 that sandwich the high dielectric constant layer 43. One of either of the first and second layer electrodes 41 and 42 is connected to a power supply line of the semiconductor element and the other of either of the first and second layer electrodes 41 and 42 is connected to a ground line. In this multilayer printed wiring board 10, high dielectric constant layer 43 included in the layered capacitor portion 40, which is connected between the power supply line and the ground line, is formed of ceramic. With this structure, the static capacitance of the layered capacitor portion 40 can be high, and an adequate decoupling effect is exhibited even under circumstances in which instantaneous potential drops occur readily.
Abstract:
Disclosed herein are a coating solution for the formation of a dielectric thin film and a method for the formation of a dielectric thin film using the coating solution. The coating solution comprises a titanium alkoxide, a β-diketone or its derivative, and a benzoic acid derivative having an electron donating group. The method comprises spin coating the coating solution on a substrate to form a thin film and drying the thin film at a low temperature to crystallize the thin film. The titanium-containing coating solution is highly stable. In addition, the coating solution enables formation of a thin film, regardless of the kind of substrates, and can be used to form dielectric thin films in an in-line mode in the production processes of PCBs.
Abstract:
A printed circuit board including a conductor portion, an insulating layer formed over the conductor portion, a thin-film capacitor formed over the insulating layer and including a first electrode, a second electrode and a high-dielectric layer interposed between the first electrode and the second electrode, and a via-hole conductor structure formed through the second electrode and insulating layer and electrically connecting the second electrode and the conductor portion. The via-hole conductor structure has a first portion in the second electrode and a second portion in the insulating layer. The first portion of the via-hole conductor structure has a truncated-cone shape tapering toward the conductor portion.
Abstract:
The present invention facilitates the thermal conductivity of fabrics by surface coating of the fabrics with high thermal conductivity materials 6. The fabrics may be surface coated when they are individual fibers or strands 4, bundles of strands, formed fabric or combinations therefore. A particular type of fibrous matrix used with the present invention is glass. Some fabrics may be a combination of more than one type of material, or may have different materials in alternating layers. HTC coatings of the present invention include diamond like coatings (DLC) and metal oxides, nitrides, carbides and mixed stoichiometric and non-stoichiometric combinations that can be applied to the host matrix.
Abstract:
A board on which a wiring having an electrode pad is formed is prepared. A resist film is formed on the board in order to cover the wiring and then the resist film is left on the electrode pad through patterning. An inorganic insulating film is formed on the board in order to cover the wiring and then the resist film is removed, thereby removing the inorganic insulating film provided on the resist film to leave the inorganic insulating film between the wirings. A solder resist layer is formed on the board in order to cover the wiring and then the electrode pad is exposed.
Abstract:
An embedded passive structure, its method of formation, and its integration onto a substrate during fabrication are disclosed. In one embodiment, the embedded passive structure is a thin film capacitor (TFC) formed using a thin film laminate that has been mounted onto a substrate. The TFC's capacitor dielectric and/or lower electrode layers are patterned in such a way as to reduce damage and improve cycle time. In one embodiment, the capacitor dielectric has a high dielectric constant and the substrate is an organic packaging substrate.