Abstract:
Accordingly, the present invention provides a catalyst composition suitable for converting light naphtha comprising one or more of C5 to C8 carbon atoms to aromatic compounds ranging from C6 to C10 carbon atoms, said catalyst composition comprising: (a) a medium pore size zeolite; (b) 0.1 to 5.0 wt % of zinc; and (c) 0.1 to 5 wt % of gallium. Also, the present invention provides a process for converting light naphtha comprising one or more of C5 to C8 carbon atoms to aromatic compounds ranging from C6 to C10 carbon atoms, said process comprising the step of contacting a feedstock comprising the light naphtha with a catalyst composition comprising (a) a medium pore size zeolite; (b) 0.1 to 5.0 wt % of zinc; and (c) 0.1 to 5 wt % of gallium in presence of carrier gas at temperatures ranging from 400° to 600° C.
Abstract:
The present invention discloses a catalytic cracking catalyst and a preparation process therefor. The catalytic cracking catalyst comprises a cracking active component, 10 wt %-70 wt % of a clay on the dry basis, and 10 wt %-40 wt % of an inorganic oxide binder (as oxide), relative to the weight of the catalytic cracking catalyst, wherein said cracking active component contains, relative to the weight of the catalytic cracking catalyst, 10 wt %-50 wt % of a modified Y-type zeolite on the dry basis and 0-40 wt % of other zeolite on the dry basis, wherein said modified Y-type zeolite is characterized by having a unit cell size of 2.420-2.440 nm; as percent by weight of the modified Y-type zeolite, a phosphorus content of 0.05-6%, a RE2O3 content of 0.03-10%, and an alumina content of less than 22%; and a specific hydroxy nest concentration of less than 0.35 mmol/g and more than 0.05 mmol/g.
Abstract:
A method for converting an olefin or an alcohol has a pretreatment step of obtaining a conductive catalyst by a pretreatment for suppressing electrostatic charging of a non-conductive catalyst and a step of converting an olefin or an alcohol by a fluidized bed reaction using the conductive catalyst.
Abstract:
A novel catalyst capable of selectively catalyzing conversion from glucose to fructose in water or in an aqueous solution is provided. The catalyst is a solid catalyst for a hydride isomerization reaction from glucose to fructose performed in water or in an aqueous solution, comprising a group 13 element oxide whose surface has been subjected to a phosphoric acid treatment.
Abstract:
The present invention provides a method for producing a silica composite by the steps of: preparing a raw material mixture containing silica and zeolite; drying the raw material mixture to obtain a dried product; and calcining the dried product, wherein the method comprising the step of allowing the raw material mixture to contain phosphoric acid and/or phosphate or bringing a solution of phosphoric acid and/or phosphate into contact with the zeolite and/or the dried product, or a combination thereof to thereby adjust a phosphorus content in the silica composite to 0.01 to 1.0% by mass based on the total mass of the silica composite.
Abstract:
A fluid catalytic cracking catalyst for increased production of propylene and gasoline from heavy hydrocarbon feedstock, the catalyst comprising between 10 and 20% by weight of an ultra-stable Y-type zeolite, between 10 and 20% by weight of a phosphorous modified sub-micron ZSM-5, between 20 and 30% by weight of a pseudoboehmite alumina, and between 30 and 40% by weight kaolin.
Abstract:
The present invention is the use of a catalyst in a MTO process to convert an alcohol or an ether into light olefins wherein said catalyst comprises a phosphorus modified zeolite and is made by a method comprising the following steps in this order,a) the essential portion of the phosphorus is introduced into a zeolite comprising at least one ten members ring in the structure,b) the phosphorus modified zeolite of step a) is mixed with at least a component selected among one or more binders, salts of alkali-earth metals, salts of rare-earth metals, clays and shaping additives,b)* making a catalyst body from mixture b),c) an optional drying step or an optional drying step followed by a washing step,d) a calcination step,d*) an optional washing step followed by drying,e) optionally a small portion of phosphorus is introduced in the course of step b) or b)* or at end of step b) or b)*.
Abstract:
An exhaust gas purification catalyst contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
Abstract translation:废气净化催化剂含有作为主要成分的氧化钛和选自钨(W),钼(Mo)和钒(V))作为活性成分的一种或两种以上的元素的氧化物,其中 废气净化催化剂含有磷酸或水溶性磷酸化合物,使得磷(P)与下式所示的催化活性成分的原子比大于0且为1.0以下; P /催化活性成分(原子比)= P /摩尔数(W的摩尔数+ Mo的摩尔数+ V的摩尔数)。
Abstract:
Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
Abstract:
A catalyst for the oxidation of volatile organic compounds and carbon monoxide comprising manganese and alumina, such catalyst having been impregnated with a phosphorus compound. The presence of the phosphorus compound results in a significant oxidative conversion of both the volatile organic compounds and the carbon monoxide. The catalyst is especially useful for treating gaseous streams that emanate from industrial sources, such as wood pulp manufacturing plants. The manganese portion of the catalyst is preferably comprised of manganese compounds comprising a defect non-stoichiometric manganese oxide of the type β-Mn3O4+x, wherein x has the value of 0.1≦x≦0.25 in respect to about 80 to about 95% of all manganese atoms, and manganese aluminate in respect to the balance of the manganese atoms. The alumina portion of the catalyst is preferably comprised of high temperature forms of alumina of the type comprising α-Al2O3 and (α+δ+θ)-Al2O3.
Abstract translation:用于氧化包含锰和氧化铝的挥发性有机化合物和一氧化碳的催化剂,这种催化剂已经用磷化合物浸渍。 磷化合物的存在导致挥发性有机化合物和一氧化碳的显着氧化转化。 催化剂特别适用于处理从工业来源产生的气流,如木浆制造厂。 催化剂的锰部分优选包含锰化合物,其包含类型为β-Mn 3 O 4 + x N的缺陷非化学计量的氧化锰,其中x具有 相对于锰原子的平衡,相对于约80至约95%的所有锰原子,0.1 <= x <= 0.25的值和铝酸锰。 催化剂的氧化铝部分优选由包含α-Al 2 O 3 3和(α+δ+θ)3 Al 3+的类型的高温形式的氧化铝组成, SUB> 2 O> 3。