Abstract:
The various structures forming communication paths on a printed circuit board can create several undesired effects, especially when high frequency signals are considered. Non-functional pads created during the manufacturing process have the potential to create an undesired effect, but when the overall collection of non-functional pads are carefully configured, an optimized communication path can be formed. More specifically, by selectively removing some collection of the non-functional pads, the high frequency characteristics of the communication paths can be optimized.
Abstract:
A resiliency system detects and corrects memory errors reported by a memory system of a computing system using previously stored error correction information. When a program stores data into a memory location, the resiliency system executing on the computing system generates and stores error correction information. When the program then executes a load instruction to retrieve the data from the memory location, the load instruction completes normally if there is no memory error. If, however, there is a memory error, the computing system passes control to the resiliency system (e.g., via a trap) to handle the memory error. The resiliency system retrieves the error correction information for the memory location and re-creates the data of the memory location. The resiliency system stores the data as if the load instruction had completed normally and passes control to the next instruction of the program.
Abstract:
An optimization system to apply directives to a computer program without having to perform repeated front-end compilations of source code of the computer program is provided. In some embodiments, the optimization system performs a first compilation of the source code of the program to generate first front-end code and first back-end code of the computer program. The compilation includes a first front-end compilation and a first back-end compilation. The optimization system identifies a compiler directive to apply to a location within the first front-end code. The optimization system then performs a second back-end compilation of the first front-end code factoring in the compiler directive to generate second back-end code affected by the compiler directive.
Abstract:
Computer systems and associated methods for cooling computer components are disclosed herein. One embodiment of a computer system includes a computer cabinet having an air inlet spaced apart from an air outlet. The computer system also includes heat exchangers positioned in the computer cabinet, and a heat removal system in fluid communication with the heat exchangers. The computer system additionally includes at least one sensor for monitoring heat transfer between the computer cabinet and the room. The computer system further includes a control system operatively coupled to the at least one sensor, the control system including a computer-readable medium holding instructions for determining whether heat transfer between the computer cabinet and the room is balanced based on information from the sensor, and if not, adjusting a parameter to balance the heat transfer.
Abstract:
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion.
Abstract:
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion.
Abstract:
An improved method for the prevention of deadlock in a massively parallel processor (MPP) system wherein, prior to a process sending messages to another process running on a remote processor, the process allocates space in a deadlock-avoidance FIFO. The allocated space provides a “landing zone” for requests that the software process (the application software) will subsequently issue using a remote-memory-access function. In some embodiments, the deadlock-avoidance (DLA) function provides two different deadlock-avoidance schemes: controlled discard and persistent reservation. In some embodiments, the software process determines which scheme will be used at the time the space is allocated.
Abstract:
Computer systems having heat exchangers for cooling computer components are disclosed herein. The computer systems include a computer cabinet having an air inlet, an air outlet spaced apart from the air inlet, and a plurality of computer module compartments positioned between the air inlet and the air outlet. The air inlet, the air outlet, and the computer module compartments define an air flow path through the computer cabinet. The computer systems also include a heat exchanger positioned between two adjacent computer module compartments. The heat exchanger includes a plurality of heat exchange elements canted relative to the air flow path.
Abstract:
A system for updating an index into a tuple table of tuples is provided. An indexing system updates an index into a tuple table using fine-grain locking of the index. The index includes a values table with an entry for each index value of an index field that references a value-tuple table that includes, for each tuple with the index value, a row that identifies a tuple of the tuple table with that indexed value. After a new tuple is added to the tuple table with a value, the index is updated by locking the entry in the values table, updating the value-tuple table for the value, and then unlocking the entry. When the index is accessed for locating tuples with a value, the accessor locks the entry in the values table for the value, uses the value-tuple table to locate the tuples, and unlocks the entry.
Abstract:
A system for providing cross-exception event handling is provided. The system allows a source thread to throw an event (e.g., exception) as part of structured event handling of a programming language that specifies a target thread. When the event is thrown, the source thread starts a handler thread to handle the event in a current context of the target thread. The handler thread is passed an indication of the event and the target thread and sets its context to be consistent with that of handling events in the target thread. The handler thread then handles the event. The source thread may continue its execution in parallel or may terminate its execution as specified in a statement that threw the event. Execution of the target thread may be aborted and its execution continued at an exit statement of an enclosing structured event handling construct—as specified when the event was thrown.