Abstract:
An integrated circuit memory device has a first set of pins to receive, using a clock signal, a row address followed by a column address. The device has a second set of pins to receive, using the clock signal, a sense command and a write command. The sense command specifies that the device activate a row of memory cells identified by the row address. The write command specifies that the memory device receive write data and store the write data at a location, identified by the column address, in the row of memory cells. The write command is posted internally to the memory device after a first delay has transpired from a first time period in which the write command is received at the second set of pins. The write data is received at a third set of pins after a second delay has transpired from the first time period.
Abstract:
A pen-type computer peripheral device includes an elongated housing containing a PCBA having a plug connector and a fingerprint sensor mounted thereon. The PCBA is secured to a positioning member that is actuated by way of a press-push button that is exposed through a slot defined in a wall of the housing. By pressing and pushing (sliding) the press-push button along the slot, the fingerprint sensor and the plug connector are moved between a retracted position, in which the fingerprint sensor is positioned inside of the housing and the plug connector is covered by a portion of the housing wall, and a deployed position in which the fingerprint sensor is exposed through the slot and the plug connector extends through a front housing opening such that both the fingerprint sensor and the plug connector are exposed outside of the housing.
Abstract:
A memory system has first, second and third interconnects and an integrated circuit memory device coupled to the interconnects. The second interconnect conveys a write command and a read command. The third interconnect conveys write data and read data. The integrated circuit memory device includes a pin coupled to the first interconnect to receive a clock signal. The memory device also includes a first plurality of pins coupled to the second interconnect to receive the write command and read command, and a second plurality of pins coupled to the third interconnect to receive write data and to assert read data. Control information is applied to initiate the write operation after a first predetermined delay time transpires from when the write command is received. During a clock cycle of the clock signal, two bits of read data are conveyed by each pin of the second plurality of pins.
Abstract:
A universal serial bus (USB) flash drive pen device for deploying and retracting a USB plug connector having a pusher assembly including a USB flash drive and a USB plug connector, in accordance with an embodiment of the present invention. The USB flash drive pen device further includes a housing assembly at least partially enclosing said pusher assembly for deploying said USB plug connector, said USB flash drive being coupled to said USB plug connector, said pusher assembly retracting said USB plug connector into said housing assembly, said USB flash drive pen device for deploying said USB plug connector to couple said USB flash drive to a USB port.
Abstract:
A circuit, system and method adjusts a reference voltage, such as an internal or external reference voltage VREF, in response to a first voltage at a first contact, such as a pin on a memory controller used for reading or writing data, and a second voltage at a second contact in embodiments. Logic is coupled to the first and second contacts to provide a control signal in response to the first and second voltages. A comparator provides an input signal to the logic in response to a target reference voltage and the reference voltage during a calibration or initialization mode of operation. In an alternate embodiment, a plurality of data values at a first contact are compared to a predetermined plurality of test data. An up/down signal is then provided to a counter and a register stores a counter value used to provide a reference voltage.
Abstract:
Various module structures are disclosed which may be used to implement modules having 1 to N channels. Bus systems may be formed by the interconnection of such modules.
Abstract:
A clutch assembly that includes an input member rotatable about an axis, an output member rotatable about the axis, and an engagement member having a portion between the input and output members. The engagement member is operable to selectively couple the input and output members together for co-rotation. The clutch assembly further includes a blocking member having a base and a projection. The projection is coupled to the engagement member to substantially prevent the engagement member from coupling the input and output members together for co-rotation when the input member rotates in a first direction relative to the output member, while allowing the engagement member to couple the input and output members lor together co-rotation when the input member rotates in a second direction relative to the output member.
Abstract:
A system comprises a master device and a plurality of memory devices coupled to the master device by an interconnect in an embodiment. The master device obtains a plurality of values representing reference voltage values and selects a first value in the plurality of values representing reference voltage values to generate an internal reference voltage value when reading data from a selected memory device in the plurality of memory devices. A method comprises obtaining a plurality of values representing reference voltages for a plurality of memory devices in an embodiment. A first value is selected in the plurality of values representing reference voltages. A reference voltage value is adjusted in response to the first value to an adjusted reference voltage value. Data is transferred to a selected memory device in the plurality of memory devices using the adjusted reference voltage value.
Abstract:
A high frequency bus system insures uniform arrival times of high-fidelity signals to the devices on the high frequency bus, despite the use of the bus on modules and connectors. A first bus segment has one or more devices connected to it between a first and a second end. A second bus segment which has no devices connected to it. The first end of the first segment and second end of the second segment are coupled in series to form a chain of segments and when two signals are introduced to the first end of the second bus segment at substantially the same time, they arrive at each device connected to the first bus segment at substantially the same time.
Abstract:
A current control circuit that employs a magnetic amplifier and an active feedback circuit. The feedback circuit establishes the effective operating current of the amplifier at a fixed point. The magnetic amplifier includes a pair of oppositely wound gate windings, a bias winding and a control winding. The gate windings are driven by an oscillator driver that generates a gate winding current and a gate winding voltage. A reference voltage and the gate winding voltage are applied to a feedback amplifier and the feedback circuit. When the gate winding voltage becomes equal to the reference voltage, the feedback circuit is stable and the gate winding current is set to a desired zero current operating point.