Abstract:
An embodiment of the disclosure includes a LED module. A substrate is provided. A light sensor is positioned in the substrate. A LED chip is attached to the substrate. The LED chip has a first side and a second side. The second side is covered by an opaque layer with an opening. The opening is substantially aligned with the light sensor. The light sensor receives a light output emitting from the LED chip through the opening.
Abstract:
The present disclosure involves a method of packaging light-emitting diodes (LEDs). According to the method, a plurality of LEDs is provided over an adhesive tape. The adhesive tape is disposed on a substrate. In some embodiments, the substrate may be a glass substrate, a silicon substrate, a ceramic substrate, and a gallium nitride substrate. A phosphor layer is coated over the plurality of LEDs. The phosphor layer is then cured. The tape and the substrate are removed after the curing of the phosphor layer. A replacement tape is then attached to the plurality of LEDs. A dicing process is then performed to the plurality of LEDs after the substrate has been removed. The removed substrate may then be reused for a future LED packaging process.
Abstract:
The present disclosure provides an illumination device. The illumination device includes a cap structure. The cap structure is partially coated with a reflective material operable to reflect light. The illumination device includes one or more lighting-emitting devices disposed within the cap structure. The light-emitting devices may be light-emitting diode (LED) chips. The illumination device also includes a thermal dissipation structure. The thermal dissipation structure is coupled to the cap structure in a first direction. The thermal dissipation structure and the cap structure have a coupling interface. The coupling interface extends in a second direction substantially perpendicular to the first direction. The thermal dissipation structure has a portion that intersects the coupling interface at an angle. The angle is in a range from about 60 degrees to about 90 degrees according to some embodiments.
Abstract:
A light emitting diode (LED) structure comprises a first dopant region, a dielectric layer on top of the first dopant region, a bond pad layer on top of a first portion the dielectric layer, and an LED layer having a first LED region and a second LED region. The bond pad layer is electrically connected to the first dopant region. The first LED region is electrically connected to the bond pad layer.
Abstract:
A lens is formed over one or more light-emitting devices disposed over a substrate. The lens includes a trench that circumferentially surrounds the one or more light-emitting devices. The trench is filled with a phosphor-containing material.
Abstract:
The present disclosure involves a device. The device includes a rectifier coupled to receive energy from an alternating current (AC) voltage source. A capacitor is coupled to the rectifier. A plurality of LEDs and a current limiter are coupled in series. The current limiter is configured to limit a current through the LEDs. The plurality of LEDs and the current limiter are collectively coupled to the capacitor in parallel. A current controller is coupled to both the capacitor and the current limiter in series. The current controller is configured to control at least a charging current of the capacitor. The device has a first current path during a first period of operation and a second current path during a second period of operation. The capacitor charges during the first period of operation and discharges during the second period of operation.
Abstract:
A lighting apparatus includes a board, a first light-emitting diode (LED) bank disposed on the board, a second LED bank disposed on the board, a light detector coupled to the first LED bank, and a driver coupled to the light detector and to each of the first and second LED banks. The first LED bank includes a plurality of first LEDs. The second LED bank includes a plurality of second LEDs, and is electrically coupled to the first LED bank. The light detector is configured to detect an output decay of light from each of the first LEDs. The second LEDs in the second LED bank are initially deactivated and are subsequently activated in response to light output decay of the first LEDs.
Abstract:
The present disclosure involves lighting apparatus. The lighting apparatus includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is disposed over the second doped semiconductor layer and over side surfaces of the first and second doped semiconductor layers and the light-emitting layer. The photo-conversion layer has an angular profile.
Abstract:
The present disclosure involves lighting apparatus. The lighting apparatus includes a light-emitting device. The light-emitting device includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is coated around the light-emitting device. A lens houses the light-emitting device and the photo-conversion layer within. The lens includes a first sub-layer and a second sub-layer. The first and second sub-layers have different characteristics.
Abstract:
A lamp includes a substrate, a plurality of light-emitting devices located over the substrate, and a cap that is located over the light-emitting devices. The plurality of light-emitting devices include a first subset of light-emitting devices and a second subset of light-emitting devices. Each light-emitting device in the first subset is free of a phosphor coating. Each light-emitting device in the second subset includes a phosphor coating. The cap has both photo-conversion properties and light-scattering properties, and the cap is located over the first subset of the light-emitting devices but exposes the second subset of the light-emitting devices.