Abstract:
Compositions containing chlorhexidine gluconate solubilized in hydrophobic vehicles are described. Resin systems containing such chlorhexidine gluconate compositions, including adhesives and articles incorporating such resin systems, including medical articles such as drapes are also described.
Abstract:
Compositions containing chlorhexidine gluconate solubilized in hydrophobic vehicles are described. Resin systems containing such chlorhexidine gluconate compositions, including adhesives and articles incorporating such resin systems, including medical articles such as drapes are also described.
Abstract:
There is provided an article comprising at least a first surface having a first binder layer selected from at least one of linear resins and resins having low cross link densities, where the first binder layer has a first major surface opposite a second major surface; and a plurality of microspheres at least partially embedded in the first major surface of the first binder layer. For at least a portion of the first major surface, the plurality of micro spheres may cover 30% to 50% of that portion, and the microspheres may be substantially uniformly spaced.
Abstract:
Articles are provided, including a substrate having a first major surface, the substrate including a nonwoven material, a woven material, or a foam. The article further includes microcapsules having an outer surface and a plasticizer encapsulated in the microcapsules, where the plurality of microcapsules is attached to the first major surface of the substrate with a polymeric material. A method of making an article is also provided, including providing a substrate having a first major surface and providing microcapsules having an outer surface and a plasticizer encapsulated in the microcapsules. The method further includes attaching the microcapsules to the first major surface of the substrate with a polymeric material, thereby forming a polymeric matrix attached to the first major surface of the substrate.
Abstract:
Articles are provided, having a multilayer structure including (a) a first layer formed from polyolefin and including undercut features formed on and extending from an integral backing; (b) a second layer including an adhesive having a Shore D hardness of greater than 59 when cured; and (c) a third layer including a substrate. The second layer is interlocked with the undercut features, the third layer is adhered to the adhesive, and the second layer is disposed between the first layer and the third layer. A method is also provided including (a) depositing a polyolefin resin into a mold cavity to form a first layer including undercut features; (b) demolding the first layer from the mold cavity at a rate of at least 150 millimeters per minute; (c) applying a curable adhesive to the undercut features to form a second layer attached to the first layer; and (d) attaching a third layer including a substrate to the second layer.
Abstract:
Polymerizable compositions containing rigid and contorted divinyl crosslinkers and polymeric materials prepared from the polymerizable compositions are described. The crosslinkers have a spirobisindane-type structure and can undergo free radical polymerization reactions. Methods of preparing the polymeric materials from the polymerizable compositions are also described.
Abstract:
Presently described are curable compositions comprising a mixture of at least one (e.g. free-radically) polymerizable ionic liquid and at least one other ethylenically unsaturated monomer, oligomer, or polymer. The polymerizable ionic liquid is characterized as having an air to nitrogen curing exotherm ratio of at least 0.70. Also described are articles and methods of making articles from such curable compositions. A monofunctional polymerizable ionic liquid is also described comprising a non-polymerizable substituted imidazolium cationic group and a polymerizable sulfonate anion.
Abstract:
Chlorhexidine gluconate solubilized in a hydrophobic monoacylglyceride is described. Compositions incorporating such materials, as well as methods of preparing such materials are also described.
Abstract:
Heat de-bondable adhesive articles include a heat-shrinkable optical substrate with optically clear adhesive disposed on the two major surfaces of the heat-shrinkable substrate. Optical articles can be prepared by disposing the heat de-bondable adhesive articles between two optical substrates. Other optical articles can be prepared by disposing an optically clear adhesive layer and a heat-shrinkable optical substrate on an optical substrate.
Abstract:
A nanostructured article includes a substrate; a plurality of first nanostructures disposed on, and extending away from, the substrate; and a covalently crosslinked fluorinated polymeric layer disposed on the plurality of first nanostructures. The plurality of first nanostructures includes polyurethane. The polymeric layer at least partially fills spaces between the first nanostructures to an average minimum height above the substrate of at least 30 nm such that the polymeric layer has a nanostructured surface defined by, and facing away from, the plurality of first nanostructures.