Abstract:
Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with first and second input terminals and differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
Abstract:
A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
Abstract:
Methods and systems for a distributed transmission line multiplexer for a multi-core multi-mode voltage-controlled oscillator (VCO) may comprise a plurality of voltage controlled oscillators (VCOs) arranged adjacent to each other, where each of the plurality of VCOs are operable to generate an output signal at a configurable frequency, an impedance matching circuit comprising a respective driver and impedance matching elements coupled to each of the plurality of VCOs, and an output device coupled to the impedance matching circuit. The impedance matching elements may include capacitors and inductors. Between each adjacent pair of the respective drivers coupled to each of the plurality of VCOs, the impedance matching elements may include two inductors coupled in series between the drivers and a capacitor coupled to ground and to a common node between the two inductors. Impedance values of the capacitors and inductors may be configurable. The impedance matching elements may include a resistor coupled to a bias voltage VDD and to a common node with a capacitor that is coupled to ground, where the common node is coupled to one of the inductors. The output device may include a prescaler that is an integer or fractional frequency-N divider, or a buffer. The respective drivers coupled to each of the plurality of VCOs may be configured to provide a constant output power no matter which of said plurality of VCOs is enabled.
Abstract:
A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.