Abstract:
The invention relates to a non-invasive method to diagnose the changes of molecular structures of organism tissues from body surface and a dedicated apparatus. The apparatus is comprised of a Fourier Transform infrared spectrometer and a set of additional accessories. Said additional accessories include a mid-IR fiber optics sampling attachment, a fiber coupling part, and an infrared detector part. The detection method is comprised of placing the ATR probe of the dedicated apparatus on the skin surface of a region to be tested, and scanning more than one time in which the resolution of the apparatus is 1-32 cm−1 and the range of the spectrum is 800-4000 cm−1. It is possible to detect changes in molecular structures of living biological tissues in the early stages of cancer, and testees will not feel uncomfortable during testing. The method is easy to operate, quick, accurate, and it doesn't harm the body.
Abstract:
Embodiments of the invention relate to an internal reflection light funnel, including an internal reflection cone having a first diameter at an entrance end and a second diameter at an exit end, the first diameter being greater than the second diameter; and a light source embedded within the cone. The funnel has a half angle of less than about 25 degrees.
Abstract:
A focused droplet nebulizer of the invention produces substantially uniform droplets of a predetermined size. Droplets are pushed out through a small outlet orifice by the contraction of a chamber. The droplets can be carried on a substantially non-divergent path in a drift tube. A piezo membrane micro pump acts in response to an electrical control signal to force a droplet out of the outlet orifice. The nebulizer can operate at frequencies permitting a stream of individual droplets of the predetermined size to be sent along the substantially non-divergent path in the drift tube in a preferred embodiment ELSD device.
Abstract:
The invention concerns improvements in spectrophotometry. Aspects of the invention may be used independently or together to increase the sensitivity of spectrophotometry. One aspect of the invention is a spectrophotometer detection circuit. In this aspect of the invention, currents attributable to reference and sample beams are cancelled in the current mode. The detection circuit produces a first voltage proportional to the difference in currents and a second voltage proportional to one of the reference or sample beams. Both voltages are available to allow simultaneous measurement and analysis. Another aspect of the invention concerns thermal stability. According to the invention, thermal conductivity is established among the housing and optical system components to promote equilibrium. Another preferred embodiment has a unitary solid metal housing with a hollowed portion defined to mount and place optical system components. Recognition and identification of important noise sources in spectrophotometers forms an aspect of the invention contributing to the features and combinations of features in preferred embodiments. Many noise sources would not normally be considered in conventional spectrophotometry because the magnitude of particular noise sources dominates device performance.
Abstract:
A method and system for detecting glucose in a biological sample is disclosed. This includes illuminating a biological sample with a light source, collecting transmitted, transflected or reflected light from the sample with a detector, generating spectral data of one or more components in the sample other than glucose in a spectral data analysis device, and analyzing the spectral data of the one or more components, sufficient to provide a glucose measurement from the spectral data of the one or more components other than glucose with the spectral data analysis device.
Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes at least one light source configured to strike a target area of a sample, at least one light detector, which includes a preamplifier having a feedback resistor, positioned to receive light from the at least one light source and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, and a processor configured to receive the output signal from the at least one light detector and based on the received output signal, calculate the attenuance attributable to blood in a sample present in the target area and eliminate effect of uncertainty caused by temperature dependent detector response of the at least one light detector, and based on the calculated attenuance, determine a blood glucose level associated with a sample.
Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes at least one light source configured to strike a target area of a sample, at least one light detector, which includes a preamplifier having a feedback resistor, positioned to receive light from the at least one light source and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, and a processor configured to receive the output signal from the at least one light detector and based on the received output signal, calculate the attenuance attributable to blood in a sample present in the target area and eliminate effect of uncertainty caused by temperature dependent detector response of the at least one light detector, and based on the calculated attenuance, determine a blood glucose level associated with a sample.
Abstract:
Systems and methods are disclosed for non-invasively measuring blood glucose levels in a biological sample based on spectral data. This includes at least one light source configured to strike a target area of a sample, at least one light detector positioned to receive light from the at least one light source and to generate an output signal, having a time dependent current, which is indicative of the power of light detected, and a processor configured to receive the output signal from the at least one light detector and based on the received output signal, calculate the attenuance attributable to blood in a sample present in the target area and eliminate effect of uncertainty caused by temperature dependent detector response of the at least one light detector, and based on the calculated attenuance, determine a blood glucose level associated with a sample present in the target area.
Abstract:
The invention concerns high sensitivity light scattering detection and its application to evaporative light scattering detection in liquid chromatography. The exemplary embodiment includes a detection cell to accept particles suspended in a gas stream and permit a polarized light beam to pass through a trajectory of the particles and gas stream. A sample light detector is disposed to detect light scattered in the detection cell. A light trap accepts the polarized beam after it passes through the detection cell. The light trap includes an elongated housing through which the polarized beam passes, and light absorptive material within the elongated housing. An absorptive filter is aligned such that the angle of incidence of the light beam upon the filter approximates Brewster's angle and the electric field vector of the beam is aligned with the plane of incidence between the beam and the filter. Other embodiments of the invention provide increased light collection. Embodiments of the invention include temperature-controlled entrance and exit ports that control particle trajectory. Embodiments of the invention include a reference cell disposed between a detection cell and a light trap, and the reference cell includes lensing and a spherical mirror to direct light toward a reference light detector. The reference light detector provides a reference signal that may be used with noise cancellation circuitry, operating in either voltage or current mode, to reduce light source noise in the sample signal.
Abstract:
A method and apparatus for forming a semiconductor device. A semiconductor substrate is implanted with dopants. The substrate is subjected to a cleaning process employing electrically neutral nitrogen and fluorine radicals to produce an oxygen-free surface having dangling bonds. Before any further exposure to oxidizing gases, the substrate is annealed by thermal treatment to activate and distribute the dopants. A gate oxide layer is formed over the annealed surface. The apparatus performs all such treatments without breaking vacuum.