Abstract:
Monolithic cartridges including a plurality of nominally aligned polymer fibers can be used as stationary phase materials for liquid chromatography separations. Bundles of fibers are packed together so as to form capillary channels between the fibers. Different polymer compositions permit the “chemical tuning” of the separation process. The fibers can be physically or chemically bonded at spaced locations throughout the cartridge or can be packed together under pressure by use of an encasing wrap to form the capillary channels. Use of fibers allows a wide range of liquid flow rates with very low backpressures. Applications in HPLC, cap-LC, prep-scale separations, analytical separations, waste remediation/immobilization, extraction of selected organic molecules/ions from solution, purification of liquid streams (process waste, drinking water, pure solvents), selective extraction of cell matter and bacteria from growth media, and immobilization of cell matter and bacteria are envisioned.
Abstract:
A porous substrate capable of adsorptive filtration of a fluid having a porous self-supporting substrate and one or more porous, adsorptive coatings comprising from about 1 to about 80% of the void volume of the pores of the substrate. The resultant substrate has good convective and diffusive flow and capacity. The substrate may be crosslinked, have one or more capture chemistries attached to it and is useful as a chromatography media for the selective filtration of desired species including biomolecules such as proteins and DNA fragments.
Abstract:
The present invention relates in general to the preparation and use of matrices having solid spaces, interstitial spaces and interstitial polymer networks. In particular, the interstitial polymer networks have utility in chemical and biochemical separations, solid phase synthesis, catalysis of chemical reactions, and immobilized enzyme reactors. The interstitial polymer networks in one embodiment comprise crosslinked polymers suspended in the interstitial spaces from and/or between solid particles. The matrices are characterized by high ligand and functional group density and by reversible high sorptive and binding capacity, and are substantially accompanied by a very low nonspecific adsorption or interaction with molecules such as proteins. Moreover, the matrices of the invention exhibit other characteristics highly desirable in chromatographic and catalytic applications, such as high physical rigidity, high ligand density, chemical stability, high ligand reactivity, and rapid exchange and reaction kinetics.
Abstract:
The invention relates to monolithic sorbents with a casing of fiber-reinforced plastic. Through the use of fiber-reinforced plastic having a viscosity of between 40 and 100 ml/10 min by the MVI method, the casing can be applied to the moulding leaving just a small dead space and has adequate mechanical stability.
Abstract:
The present invention provides a separating agent for optical isomers having a porous monolithic inorganic type carrier and polysaccharide or a derivative thereof supported on the monolithic inorganic type carrier, and a separation column for optical isomers in which the separating agent for optical isomers is held in a column tube. According to the invention, the separating agent for optical isomers and the separation column for optical isomers which have high asymmetry recognition ability and can be used particularly at a high flow rate when used for the separation of optical isomers is provided.
Abstract:
The present invention relates to columns for carrying out separation processes involving protein solutions, wherein at least the interior surface of the column is comprised of fluoropolymer.
Abstract:
A microchip-based electrospray ionization device and column with affinity adsorbents is disclosed. The invention includes a microchip array and a capillary tube or alone or attached in combination. At least a portion of the device or column has immobilized affinity adsorbents. Methods for using the device are provided as well for affinity capture of biomolecules to meet the needs for the modem life sciences such as proteomics and drug discover.
Abstract:
The present invention provides porous monoliths with high flow permeability that can be produced by polymerising and divinylbenzene in the presence of an initiator, a carboxy-functionalized nitroxide stable free radical and polymeric porogens. The monoliths produced with these stable free radicals functionalized with carboxylic groups feature porosities very different from those produced by polymerizations involving other SFRs, characterized by very large surface areas in combination with relatively large through-pores. The invention also provides a method for producing the monoliths, a column containing the monoliths and an assay method using the column.
Abstract:
The invention relates to a process for isolating and purifying a polynucleotide on a manufacturing scale which uses a chromatographic separation process comprising a combination of two different chromatographic steps selected from hydrophobic interaction chromatography, polar interaction chromatography and anion exchange chromatography. In at least one of the two steps the chromatographic support is a porous monolithic bed. The invention also relates to a chromatographic device and its use for isolating and purifying a polynucleotide of interest, in particular plasmid DNA, on manufacturing scale.
Abstract:
A microfabricated silicon chip with a separation material, such as in situ prepared porous polymer monoliths in its microchannels is disclosed. The polymer monoliths are liquid-permeable and serve as microcolumns for liquid chromatography, which are prepared by in situ radical polymerization of a mixture containing vinyl monomers and solvents (porogen) in the microchannels. A method and system are disclosed to generate one or more electrospray plumes from one or more nozzles that provide an ion intensity as measured by a mass spectrometer that is approximately proportional to the number of electrospray plumes formed for analyses contained within the fluid. A plurality of electrospray devices can be used in the form of an array of miniaturized separate electrospray devices for the purpose of generating multiple electrospray plumes from multiple nozzles for the same fluid for analysis. This invention dramatically increases the sensitivity of microchip electrospray devices compared to prior disclosed systems and methods. The silicon chip having the packed microchannels disclosed herein finds application in coupling with mass spectrometry for sample analysis. Also disclosed is a separation block having multiple through-substrate channels filled with a separation material such as polymer monolith which can be stacked in multiple blocks for sequential two-dimensional chromatographic separation and integrated with the electrospray device.