Abstract:
A fluid spraying nozzle may include a flexible spray tube, and a guide which is disposed so as to surround the outside of said spray tube in the diametral direction. The ring-shaped tube side magnet may be provided on the spray tube. A ring-shaped guide side magnet may be provided on the guide. A polarity of an outer peripheral side of the tube side magnet and a polarity of an inner peripheral side of the guide side magnet may have the same polarity.
Abstract:
A fluid spraying device comprises a first supply flow path which guides a pressurized liquid, a second supply flow path which guides a pressurized gas, a gas-liquid mixing part which joins the first supply flow path and the second supply flow path and which mixes the liquid and the gas, and an ejection flow path which guides a fluid from the gas-liquid mixing part to the outside. A branching/joining part is provided at an intermediate part of the ejection flow path which, after branching the ejection flow path into a plurality of branch flow paths, rejoins these branch flow paths together. Moreover, a fluid spraying nozzle comprises a flexible spray tube, and a guide which surrounds the spray tube from the outside in the diametral direction. A ring-shaped tube side-magnet is provided on the spray tube, a ring-shaped guide side magnet is provided on the guide, and the polarity of the outer peripheral side of the tube side magnet and the polarity of the inner peripheral side of the guide side magnet have the same polarity.
Abstract:
For producing a polyurethane layer by spraying a polyurethane reaction mixture, this mixture is supplied under pressure to a spray nozzle, within the nozzle the reaction mixture is accelerated by passing it through one or more channels having a reduced cross-sectional area, and the accelerated reaction mixture is sprayed, with a predetermined amount of kinetic energy, through a spray opening out of the spray nozzle onto a surface. The channels wherein the reaction mixture is accelerated have a total minimum cross-sectional area of S mm2, S being a value smaller than 1.0, the reaction mixture is sprayed out of the nozzle at a flow rate of between 10×S and 80×S g/sec, and, per gram reaction mixture, an amount of 0.05 to 2.5 mmol of a pressurised gas is sprayed together with the reaction mixture through said spray opening out of the nozzle to increase the kinetic energy of the reaction mixture which is sprayed out of the nozzle. By the addition of a pressurised gas to the reaction mixture, a same or even a better spray pattern can be achieved and the reaction mixture can be sprayed at a smaller flow rate.
Abstract:
A fluid spraying device comprises a first supply flow path which guides a pressurized liquid, a second supply flow path which guides a pressurized gas, a gas-liquid mixing part which joins the first supply flow path and the second supply flow path and which mixes the liquid and the gas, and an ejection flow path which guides a fluid from the gas-liquid mixing part to the outside. A branching/joining part is provided at an intermediate part of the ejection flow path which, after branching the ejection flow path into a plurality of branch flow paths, rejoins these branch flow paths together. Moreover, a fluid spraying nozzle comprises a flexible spray tube, and a guide which surrounds the spray tube from the outside in the diametral direction. A ring-shaped tube side-magnet is provided on the spray tube, a ring-shaped guide side magnet is provided on the guide, and the polaity of the outer peripheral side of the tube side magnet and the polarity of the inner peripheral side of the guide side magnet have the same polarity.
Abstract:
A fluid system has a fluid control device that can receive a gas hose and fluid hose. The fluid control device can also have a gas source and can be configured to receive the liquid hose. The fluid control device is provided to output a fluid flow into an output hose. The fluid control device can be positioned near a liquid source or a nozzle of the output hose. In another arrangement, the fluid control device can receive low pressure fluid and deliver high pressure fluid to a high pressure device. The fluid system can have a hose reel apparatus for spooling a hose connected to the fluid control device and the high pressure device.
Abstract:
A composition of matter, apparatus, and method relating to silicone-aggregate mixtures for pumping and spraying applications. In preferred embodiments, the apparatus and method can include a metering mechanism for dispensing the mixture to the pump, an agitator for mixing the mixture before it enters the pump, and a spray nozzle for applying the mixture exiting the hose. Even more preferred embodiments can include a metering mechanism in the form of a variable speed auger screw, a hose internally lined with a coating of polytetrafluoroethylene, a hose structurally reinforced, and a pump and hose that are individually sealable.