Abstract:
A modular unmanned aerial vehicle (UAV) having a fuselage, a nose cone, a left wing piece, a right wing piece, and a tail section. The tail section and nose cone each join to the fuselage through mating bulkhead structures that provide quick connection capability while being readily separated so as to enable the UAV to break apart at these connection points and thereby absorb or dissipate impact upon landing. The UAV is capable of rapid assembly in the field for two-man launch and data retrieval, as well as quick disassembly into these five component parts for transport and storage in a highly compact transport case that can be carried as a backpack.
Abstract:
The present invention provides an unmanned airborne reconnaissance vehicle having a fuselage, a forward wing pair and a rearward wing pair vertically separated by a gap and staggered fore and aft therebetween such that a general biplane configuration is formed. The present invention provides a pair of wing tip plates for joining the wing tips of the forward and rearward wings. The unmanned airborne reconnaissance vehicle of the present invention includes a power plant to propel the vehicle through the air and a generally T-shaped tail having a vertical stabilizer including a rudder and a full span elevator.
Abstract:
Methods and apparatuses provide surveillance of a convoy. At least one unmanned aerial vehicle (UAV) obtains images around the convoy's position to provide information about potential hostile activity while the UAV follows a generally curvilinear path around the convoy as instructed by one of the convoy vehicles. Path planner algorithm software is executed by the controlling convoy vehicle in which position and velocity information regarding the unmanned aerial vehicle and the convoy are processed to determine values of control variables. The determined values are sent to the unmanned aerial vehicle over a wireless communications channel. The path of the surveillance vehicle may be changed in order to provide evasive measures to avoid an attack on the surveillance vehicle by an adversary.
Abstract:
A vehicle for flying and having a forward portion and a rearward portion opposite the forward. The vehicle includes a first pair of wings arranged at the forward portion of the vehicle, a second pair of wings arranged at the rearward portion of the vehicle, and a support structure. The support structure is connected to the forward pair of wings and connected to the rearward pair of wings, the support structure being arranged to drive the forward pair of wings alternately toward each other and apart and drives the second pair of wings alternately toward each other and apart.
Abstract:
A method for refueling and reloading an unmanned aircraft for continuous flight is disclosed herein wherein the unmanned aircraft is maintained and supported by a support aircraft. Both aircraft maintain cargo bays and in-flight operable doors located on the underside of each aircraft for the purposes of docking and exchanging goods. Preferably the goods comprise loadable cartridges and may contain such items as weapons, cargo, or fuel for example. In one embodiment, when both aircraft are in a docked configuration for exchange of goods during flight, the in-flight operable doors open and the support aircraft is capable of loading such cartridges aboard the unmanned aircraft. When necessary the support aircraft may load gear for the purposes of landing the unmanned aircraft. Alternate methods of reloading an unmanned aircraft for continuous flight is disclosed wherein the unmanned aircraft does not have cargo bay doors and the aircraft is supported by a support aircraft.
Abstract:
A transformable gun launched aero vehicle having a ballistic projectile configuration and an aeroplane configuration includes a cylinder forming a shell of the vehicle in the ballistic projectile configuration and wings deployable from the cylinder. The wings are capable of achieving sufficient lift for sustained flight in the aeroplane configuration. The cylinder forms a fuselage of the vehicle in the aeroplane configuration. A wing includes plural rib elements, plural inflatable tubes where each tube is braced by the plural rib elements, and a wind shell disposed around the plural inflatable tubes and the plural rib elements. The vehicle includes an inflatable tail section that is inflated while the vehicle is in the aeroplane configuration. The vehicle includes a parachute that is reversibly deployable from a nose portion of the vehicle. The vehicle includes at least one landing rod. Each landing rod is reversibly extendable from the vehicle. A landing controller controls a first landing rod to extend after the vehicle has begun to vertically descend. The vehicle includes a folding propeller deployable from the fuselage in the aeroplane configuration. The vehicle includes a control system, and the control system includes a module to determine when the vehicle has reached a first predetermined state that defines an initiation of a transition from the ballistic projectile configuration to the aeroplane configuration.
Abstract:
A method for reducing a nose-up pitching moment in an unmanned aerial vehicle during forward flight. The unmanned aerial vehicle includes counter-rotating rotor assemblies that are mounted within a duct. Each rotor assembly includes a plurality of rotor blades. The method involves adjusting the rotor blades to have substantially zero pitch. Then rotating the rotor assemblies to produce a virtual plane across the duct. The virtual plane is operative for substantially deflecting air passing over the fuselage away from the duct. In one embodiment of the invention, the method involves the further step of obstructing at least a portion of the bottom of the duct to inhibit air that is flowing across the bottom of the duct from passing into the duct.
Abstract:
In one aspect, an unmanned aerial system for crowd control, includes a chassis for attaching components of the unmanned aerial system and one or more rotary wings, each of the one or more rotary wings drivable by a respective motor. A container stores a pressurized source of a crowd control agent and a nozzle is provided for dispersing the crowd control agent into the air. An electronically controlled valve selectively places the nozzle into fluid communication with the container. In a further aspect, a modular unmanned aerial system for crowd control is provided.
Abstract:
An adaptive aerial vehicle includes a vehicle support, at least one frame assembly mounted relative to the support, at least one propulsion unit mounted to the frame assembly and operable to move the adaptive aerial vehicle, and an actuator configured to move the support relative to the frame assembly to redistribute the weight of the adaptive aerial vehicle.
Abstract:
Systems and methods are provided for least one leading drone configured to move to a leading drone future location based on a future location of a base station. A set of base station future locations may form a base station path for the base station to traverse. Also, a set of leading drone future locations may form a leading drone path for the leading drone to traverse. The base station's future location may be anticipated from a prediction or a predetermination. The leading drone, navigating along the leading drone path, may collect sensor data and/or perform tasks. The leading drone may interact with sensor drones while traversing the leading drone path. Accordingly, the leading drone may move ahead of the base station in motion, as opposed to following or remaining with the base station.