Abstract:
The invention relates to a method for controlling an elevator installation with at least one shaft and a number of cars, it being possible to make at least two cars travel separately up and down along a common traveling path and a passenger being able to enter a destination call by means of an input unit disposed outside the shaft and the destination call being allocated to a car in dependence on an allocation assessment. To develop the method in such a way that the transporting capacity can be increased, with the cars which can be made to travel along a common traveling path hindering one another as little as possible, it is proposed according to the invention that, in the case of allocation of the destination call to one of the cars which can be made to travel along the common traveling path, the portion of the traveling path required for serving the destination call is assigned to this car and blocked for the time of the assignment for the other cars. Furthermore, an elevator installation for carrying out the method is proposed.
Abstract:
Multiple elevators are installed as a group in a building and are equipped with destination floor boarding location buttons (7), (8), (9) and (10) that are provided on the lobby floor. Multiple car controllers (1), (2), (3), (4) and (5) are input car data for each elevator so that the controllers control the operations of each elevator. A higher level controller (6) is provided with input data from the multiple car controllers and call data and that efficiently operates multiple cars while accommodating changes in traffic demand. When it is determined that higher level controller (6) is in service, all the floors are divided up into sectors and cars are quickly dispatched to the aforementioned sectors in response to the aforementioned destination floor boarding calls, and the sequencing of service in each sector will be in the order in which each destination floor boarding call has occurred.
Abstract:
An elevator system for up-peak servicing of a building having a dual lobby. The system includes a controller having an electronic processor coupled to a memory; a plurality of elevator cars controllably connected to the controller, a dual lobby routine stored within the memory, the dual lobby routine includes instructions for dispatching at least one of the elevator cars to a lower lobby during up-peak, indicating a sector assigned to the car, nudging (if needed) the car if a lower lobby time-out is exceeded, dispatching the car to the upper lobby if a load weight threshold is not exceeded, and then indicating the sector assigned to the car while the car is located at the upper lobby.
Abstract:
To assign a car to a hall call such that cars tend to be equally spaced apart and so that bunching of cars is avoided, the position of each car is predicted over a given period by estimating where it will arrive and leave each of its committed stops over that period for a given set of hall call/car call assignments, a bunching measure is calculated and a car to hall call assignment is made in response to the bunching measure.
Abstract:
A method and apparatus for group-supervising an elevator system according to this invention consists in predicting the position of operating cages after the lapse of a predetermined time, detecting an unoccupied cage and tentatively setting the standby position thereof, so as to predict the position of unoccupied cages after the lapse of the predetermined time under the condition that the detected unoccupied cage is run to the set position and is caused to stand by there, predicting, from the positions of the cages, the number of cages which will lie in certain floors or certain floor zones after the lapse of the predetermined time and estimating the numbers of cages in association with the floors, whereby the floor in which the unoccupied cage is to stand by is selected.
Abstract:
An elevator control system employes microprocessor-based group controller which communicates with the cars of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of calls to cars based on the summation for each car, with respect to each call, a weighted summation of a plurality of system response factors indicative of conditions of the car irrespective of the call to be assigned, and indicative of conditions of the car relative to the call to be assigned, including factors relating to preferring cars which are running, which require motion to provide service already assigned to the car, which do not have lobby calls, which are not positioned at the lobby, which are not full, even though the car may have a car call at the floor of the hall call under consideration, which do not have excessive car calls in them, and so forth. Exemplary apparatus and logic flow diagrams are disclosed to illustrate the specific manner of assigning calls to cars in accordance with the invention, and to illustrate the environment in which the invention may be practiced.
Abstract:
A method for controlling a lift installation having a plurality of cabins that can each stop at a number of floors may involve assigning calls placed outside the cabins to the cabins by way of a lift controller based on at least one assignment criterion. The method may involve considering a current traffic situation of the lift installation during the assignment. The method may further involve generating and considering a forecast of a future traffic situation of the lift installation during the assignment. The forecast may account for personal information of at least one of a person who is in a predetermined environment of the lift installation, a person who is in a section of the lift installation, a person who enters a predetermined environment of the lift installation, or a person who leaves a predetermined environment of the lift installation.”
Abstract:
A system and method for controlling multiple elevator cabs in an elevator shaft of a structure, where at least one elevator shaft having a plurality of zones, each zone representing at least one floor of the structure; at least one zone having at least one sensor; at least two elevator cabs moveable within the shaft, each cab moveable independently of other cabs; and a controller that determines movement of each cab into a zone. A first cab preceding any other cab, designated a leading cab; each cab following the leading cab, designated as a trailing cab; each cab moveable in the same direction of travel to service zones until each cab reaches its designated end zone; wherein the controller only instructs a trailing cab to move into a zone with a sensor, after the sensor in the zone detects a cab that was located in such zone has exited that zone thereby preventing collisions.
Abstract:
Lift systems may include a first shaft unit and a second shaft unit, each of which may include a number of lift shafts. One or more single-car systems and/or multi-car systems may be disposed in the first shaft unit, whereas one or more shaft-changing multi-car systems may be disposed in the second shaft unit. A transporting operation may be carried out from an initial floor to a destination floor wherein a control unit determines whether to utilize one or more cars from the single car systems, the multi-car systems, the shaft-changing multi-car systems, or some combination thereof depending on factors such as the destination floors of the passengers, traffic density, energy demand, and/or availability of cars.”