Abstract:
An object of the present invention is to provide a synthetic silica glass optical material which exhibits excellent transmittance as well as durability for high output power vacuum ultraviolet rays, being emitted from, for example, ArF excimer lasers and Xe.sub.2 excimer lamps, and to provide a method for producing the same. A synthetic silica glass optical material for high output power vacuum ultraviolet rays made from ultra high purity synthetic silica glass for use in the wavelength region of from 165 to 195 nm, containing OH groups at a concentration of from 5 to 300 wtppm with a fluctuation width in OH group concentration (.DELTA.OH/cm) of 10 wtppm or less, containing hydrogen molecules at a concentration of from 1.times.10.sup.17 to 1.times.10.sup.19 molecule/cm.sup.3 with a fluctuation width in hydrogen molecule concentration (.DELTA.H.sub.2 /cm) of 1.times.10.sup.17 molecule/cm.sup.3 or lower, and containing chlorine at a concentration of 50 wtppm or lower. Also claimed is a method for producing the same.
Abstract:
In an optical component having a cylindrical core of quartz glass and a coaxial jacket of quartz glass containing a dopant which decreases the index of refraction, the jacket glass contains a viscosity-increasing stiffening agent to reduce tensile strength on the core at drawing temperature of 1000.degree. to 2500.degree. C. or a relaxation agent for lowering the viscosity of the quartz glass in a concentration which is lower than that present in the core glass.
Abstract:
An optical fiber having an axial direction and a cross section perpendicular to the axial direction, and a method and preform for producing such an optical fiber. The optical fiber is adapted to guide light at a wavelength λ, and includes a core region, an inner cladding region surrounding said core region, and at least one of a first type of feature including a void and a surrounding first silica material. The core, the inner cladding region and the first type of feature extends along said axial direction over at least a part of the length of the optical fiber. The first silica material has a first chlorine concentration of about 300 ppm or less.
Abstract:
An optical fiber having an axial direction and a cross section perpendicular to the axial direction, and a method and preform for producing such an optical fiber. The optical fiber is adapted to guide light at a wavelength λ, and includes a core region, an inner cladding region surrounding said core region, and at least one of a first type of feature including a void and a surrounding first silica material. The core, the inner cladding region and the first type of feature extends along said axial direction over at least a part of the length of the optical fiber. The first silica material has a first chlorine concentration of about 300 ppm or less.
Abstract:
An optical fiber having an axial direction and a cross section perpendicular to the axial direction, and a method and preform for producing such an optical fiber. The optical fiber is adapted to guide light at a wavelength λ, and includes a core region, an inner cladding region surrounding said core region, and at least one of a first type of feature including a void and a surrounding first silica material. The core, the inner cladding region and the first type of feature extends along said axial direction over at least a part of the length of the optical fiber. The first silica material has a first chlorine concentration of about 300 ppm or less.
Abstract:
A multicore optical fiber that includes: a core that is formed of silica glass doped with at least fluorine, the core having a relative refractive index difference with respect to a refractive index of silica as a reference being −0.30% to −0.10%; and a clad that is formed of silica glass doped with at least fluorine. The clad includes a first clad surrounding an outer periphery of the core and a second clad provided outside the first clad. A relative refractive index difference between the first clad and the core is 0.8% or more. A refractive index of the second clad is higher than a refractive index of the first clad and lower than a refractive index of the core.
Abstract:
The present disclosure provides optical fiber preforms formed from core canes having large core-clad ratio, intermediate core-cladding assemblies, and methods for making the preforms and core cladding assemblies. The preforms are made from core canes having a contoured end surface. The contoured end surface(s) include a depression that acts to reduce the stress that develops at the junction of the end surface of the core cane with a soot cladding monolith arising from differences in the coefficient of thermal expansions of the core can and soot cladding monolith. The contoured end surface(s) leads to preforms having low defect concentration and low probability of failure during fiber draw.
Abstract:
A method for producing rare earth metal-doped quartz glass includes the steps of (a) providing a blank of the rare earth metal-doped quartz glass, and (b) homogenizing the blank by softening the blank zone by zone in a heating zone and by twisting the softened zone along a rotation axis. Some rare earth metals, however, show a discoloration of the quartz glass, which hints at an unforeseeable and undesired change in the chemical composition or possibly at an inhomogeneous distribution of the dopants. To avoid this drawback and to provide a modified method which ensures the production of rare earth metal-doped quartz glass with reproducible properties, during homogenization according to method step (b), the blank is softened under the action of an oxidizingly acting or a neutral plasma.
Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
Hollow ingots of transparent synthetic vitreous silica glass of external diameter greater than 400 mm and internal diameter greater than 300 mm are disclosed. The ingots are substantially free from bubbles or inclusions greater than 100 μm in diameter, have no more than 100 ppB of any individual metallic impurity, and have chlorine concentration less than 5 ppM. Also disclosed are methods for producing such ingots, in which a porous soot body of density greater than 0.4 g/cm3 is deposited on an oxidation resistant mandrel. The soot body is dehydrated on a mandrel comprising graphite, carbon fiber reinforced carbon, silicon carbide, silicon impregnated silicon carbide, silicon carbide-coated graphite or vitreous silica, either under vacuum or in the presence of a reducing gas, and then sintered to transparent pore-free glass under vacuum or in an atmosphere of helium.