Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
This ultralow-loss glass is characterized in that high purity silica glass contains 1 to 500 wt.ppm of at least one network modifying oxide. It is assumed that the network modifying oxide appropriately loosens the tetrahedral network structure of silica and hence Rayleigh scattering is decreased. Examples of the network modifying oxide include Na.sub.2 O, K.sub.2 O, Li.sub.2 O, MgO, CaO, and PbO. Since Rayleigh scattering losses are minimal in comparison with those of high purity silica glass, this impurity-added silica glass is excellent as a base material of a glass fiber for a long-distance transmission.
Abstract:
Soft quartz glass having low viscosity and a low thermal coefficient of expansion, high electrical insulation capability and free from release of contaminants, when used as a bulb of an incandescent lamp or as an envelope in an arc vessel of a discharge lamp, is a quartz glass made of ultra-pure quartz (SiO.sub.2), for example having a purity of 99.99 mol-%, doped with stoichiometric compounds of alkaline earth oxides with boron oxide, optionally also with a small quantity of Al.sub.2 O.sub.3 in an overall quantity of the doping substance of between about 0.05% to 0.8%, by weight.
Abstract:
This invention relates to the immobilization of toxic, e.g., radioactive materials, internally in a silicate glass or silica gel matrix for extremely long periods of time. Toxic materials, such as radioactive wastes containing radioactive anions, and in some cases cations, which may be in the form of liquids, or solids dissolved or dispersed in liquids or gases, are internally incorporated into a glass matrix, having hydrous organofunctionalsiloxy groups, e.g., hydrous aminoalkylsiloxy or carboxyorganosiloxy, bonded to silicon atoms of said glass and/or hydrous polyvalent metals bonded to silicon atoms of said glass through divalent oxygen linkages or otherwise immobilized therein, by a process which involves the ion exchange of said toxic, radioactive anions with hydroxyl groups attached to said organofunctionalsiloxy groups or with hydroxyl groups attached to the hydrous polyvalent metal. Thereafter, the resulting glass now characterized by a distribution of internally bonded or immobilized, toxic, radioactive anions can be packaged in suitable containers, and disposed of as by burial, and/or they can be sintered to collapse the pores thereof to disposal or for producing useful radiation sources. The porous glass or a porous silica gel having said silicon-bonded organofunctionalsiloxy groups and/or said hydrous polyvalent metal oxy groups, the pores of said glass or silica gel remaining open and uncollapsed, can be used advantageously as a backfill for an underground radioactive waste burial site and as overpack in the waste disposal container. Also included is a novel method for bonding the polyvalent metal to the porous silica glass or gel by substituting the protons of the silicon-bonded hydroxyl groups thereof with an alkali metal or ammonium cation followed by displacement of said cation with the non-radioactive polyvalent metal cation.
Abstract:
This invention relates to the immobilization of toxic, e.g., radioactive materials, internally in a silicate glass or silica gel matrix for extremely long periods of time. Toxic materials, such as radioactive wastes containing radioactive anions, and in some cases cations, which may be in the form of liquids, or solids dissolved or dispersed in liquids or gases, are internally incorporated into a glass matrix, having hydrous organofunctionalsiloxy groups, e.g., hydrous aminoalkylsiloxy or carboxyorganosiloxy, bonded to silicon atoms of said glass and/or hydrous polyvalent metals bonded to silicon atoms of said glass through divalent oxygen linkages or otherwise immobilized therein, by a process which involves the ion exchange of said toxic, radioactive anions with hydroxyl groups attached to said organofunctionalsiloxy groups or with hydroxyl groups attached to the hydrous polyvalent metal. Thereafter, the resulting glass now characterized by a distribution of internally bonded or immobilized, toxic, radioactive anions can be packaged in suitable containers, and disposed of as by burial, and/or they can be sintered to collapse the pores thereof prior to disposal or for producing useful radiation sources. The porous glass or a porous silica gel having said silicon-bonded organofunctionalsiloxy groups and/or said hydrous polyvalent metal oxy groups, the pores of said glass or silica gel remaining open and uncollapsed, can be used advantageously as a backfill for an underground radioactive waste burial site and as overpack in the waste disposal container. Also included is a novel method for bonding the polyvalent metal to the porous silica glass or gel by substituting the protons of the silicon-bonded hydroxyl groups thereof with an alkali metal or ammonium cation followed by displacement of said cation with the non-radioactive polyvalent metal cation.
Abstract:
A tube glass of the present invention includes an alkali silicate glass, in which a glass composition is substantially free of B2O3 and Al2O3, and a loss in mass ρ (mg/dm2) in an alkali resistance test in accordance with ISO 695 (199105-15) is classified as Class A1.
Abstract:
An optical fiber preform includes a silica-glass core portion, and a cladding portion surrounding the core portion, the cladding portion being composed of a fluorine-containing silica glass having a lower refractive index than the core portion, the core portion including a first region that does not include the central axis thereof, the first region containing a first dopant selected from sodium, potassium, and compounds thereof, and a second region that includes the central axis, the second region containing a second dopant that reduces the viscosity of the silica glass, the second dopant having a diffusion coefficient of 1×10−12 cm2/s or more and less than the first dopant at 2,000° C. to 2,300° C., in which the entire core portion has an average first dopant concentration of 10 atomic ppm or more and 2,000 atomic ppm or less and an average second dopant concentration of 10 atomic ppm or more.
Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.
Abstract:
An optical fiber preform of the present embodiment comprises a core portion and a cladding each comprised of silica glass. The core portion has a first dopant region including a central axis of the core portion and a second dopant region away from the central axis. The first dopant region contains a first dopant selected from among Na, K, and their compounds, and a concentration of the first dopant is 10 atomic ppm or more but 2,000 atomic ppm or less. The second dopant region contains a second dopant reducing viscosity of the silica glass. The second dopant has, as a characteristic at a temperature of 2,000° C. to 2,300° C., a diffusion coefficient of 1×10−12 cm2/s or higher but lower than that of the first dopant, and a concentration of the second dopant region is 10 atomic ppm or more.
Abstract:
A preparation method of rare earth ions doped alkaline earth metal silicate luminescent glass is provided. The steps involve: step 1, mixing the source compounds of cerium, terbium and alkaline earth metals and putting the mixture into solvent to get a mixed solution; step 2, impregnating the nanometer pores glass with the mixed solution obtained in step 1; step 3: calcining the impregnated nanometer pores glass obtained in step 2 in a reducing atmosphere, cooling to room temperature, then obtaining the cerium and terbium co-doped alkaline earth metal silicate luminescent glass. Besides, the rare earth ions doped alkaline earth metal silicate luminescent glass prepared with aforesaid method is also provided. In the prepared luminescent glass, cerium ions can transmit absorbed energy to terbium ions under the excitation of UV light due to the co-doping of cerium ions. As a result, the said luminescent glass has higher luminous intensity than the glass only doped with terbium.