Abstract:
A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
Abstract:
Disclosed is a heavy-release force release film having surface microviscosity and a preparation method thereof A release layer of the release film comprises: by mass, 10 to 25 parts of vinyl silicone oil, 0.5 to 5 parts of a cross-linking agent, 15 to 40 parts of silicon resin, 25 to 60 parts of a pressure-sensitive adhesive, 1 to 6 parts of a curing agent, and 30 to 60 parts of a diluent. The preparation method comprises: removing water, static electricity, dust and foreign matters on a surface of a substrate; uniformly stirring vinyl silicone oil, the cross-linking agent, the pressure-sensitive adhesive, silicon resin and the diluent according to the above mass part ratio; adding the curing agent into the mixture and stirring; coating the release agent on a processed surface of the substrate, drying and carrying out rolling-up.
Abstract:
A protective film includes an adhesive layer containing a first synthetic resin, and a non-adhesive layer containing a second synthetic resin and micro-beads made of a polymer, the micro-beads being distributed in the second synthetic resin. The adhesive layer and the non-adhesive layer are laminated on each other.
Abstract:
A transfer film having a transfer layer disposed on a support film provided with the concave-convex structure, wherein the transfer layer includes a shape retaining layer and an adhesive layer, both the shape retaining layer and the adhesive layer containing a condensation product of a metal alkoxide, and the support film, the shape retaining layer, and the adhesive layer being disposed in this order.
Abstract:
By a temporary adhesive for production of semiconductor device containing (A) a polymer compound having a thermal decomposition initiation temperature of 250° C. or more, and (B) a radical polymerizable monomer, and an adhesive support and a production method of semiconductor device using the same, a temporary adhesive for production of semiconductor device, which can temporarily support a member to be processed (for example, a semiconductor wafer) with a high adhesive force even under high temperature condition (for example, at 100° C.) when the member to be processed is subjected to a mechanical or chemical processing, which reduces a problem of generation of gas therefrom in the temporary support even under high temperature condition, and which can easily release the temporary support for the member processed without imparting damage to the member processed, and an adhesive support and a production method of semiconductor device using the same can be provided.
Abstract:
The present invention relates to a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material layer, a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer stacked in this order, and a film for semiconductor back surface stacked on the second pressure-sensitive adhesive layer of the dicing tape, in which a peel strength Y between the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is larger than a peel strength X between the second pressure-sensitive adhesive layer and the film for semiconductor back surface, and in which the peel strength X is from 0.01 to 0.2 N/20 mm, and the peel strength Y is from 0.2 to 10 N/20 mm.
Abstract:
A pressure-sensitive adhesive composition includes: 100 parts by mass of a polymer (A) (Tg:lower than 0° C.); 0.05 to 3 parts by mass of a (meth)acrylic polymer (B) (MWB:1000≦MWB
Abstract:
A method and a system for producing a change in a medium. The method places in a vicinity of the medium at least one energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
Abstract:
The present invention relates to a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material layer, a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer stacked in this order, and a film for semiconductor back surface stacked on the second pressure-sensitive adhesive layer of the dicing tape, in which a peel strength Y between the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is larger than a peel strength X between the second pressure-sensitive adhesive layer and the film for semiconductor back surface, and in which the peel strength X is from 0.01 to 0.2 N/20 mm, and the peel strength Y is from 0.2 to 10 N/20 mm.
Abstract:
There is provided a method that allows semiconductor chips to be obtained from a semiconductor wafer at high yield, while sufficiently inhibiting generation of chip cracks and burrs. The method for manufacturing a semiconductor chip comprises a step of preparing a laminated body having a semiconductor wafer, an adhesive film for a semiconductor and dicing tape laminated in that order, the semiconductor wafer being partitioned into multiple semiconductor chips and notches being formed from the semiconductor wafer side so that at least a portion of the adhesive film for a semiconductor remains uncut in its thickness direction, and a step of stretching out the dicing tape in a direction so that the multiple semiconductor chips are separated apart, to separate the adhesive film for a semiconductor along the notches. The adhesive film for a semiconductor has a tensile breaking elongation of less than 5% and the tensile breaking elongation of less than 110% of the elongation at maximum load.