Abstract:
Adding to a fuel oil a composition of from about 1 to about 40 parts by weight ethylene/vinyl acetate copolymer having a vinyl acetate content of from about 10% by weight to about 50% by weight and a weight average molecular weight of from about 2,000 to about 10,000, and 1 part by weight esterified copolymer of at least one generally linear .alpha.-olefin of from about 18 to about 50 carbon atoms and maleic anhydride in an .alpha.-olefin to maleic anhydride molar ratio of from about 4:1 to about 1:2, the copolymer having a weight average molecular weight of from about 2,000 to about 20,000, the esterified copolymer having been esterified with a plurality of aliphatic alcohols having from about four to about forty carbon atoms, imparts to the fuel oil surprisingly improved low temperature fluidity, provided that the alcohols include an eight carbon alcohol making up from about 50 to about 85 molar percent of the alcohols.
Abstract:
Gel-free dispersant additives for lubricating and fuel oil compositions comprise at least one adduct of (A) .alpha.-olefin homopolymer or interpolymer of 700 to 10,000 number average molecular weight, free radically grafted with an average of from about 0.5 to about 5 carboxylic acid producing moieties per polymer chain, and (B) at least one non-aromatic nucleophilic post-treating reactant selected from (i) amine compounds containing only a single reactive amino group per molecule, (ii) alcohol compounds containing only a single hydroxy group per molecule, (iii) polyamine compounds containing at least two reactive amino groups per molecule, (iv) polyol compounds containing at least two reactive hydroxy groups per molecule, (v) aminoalcohol compounds containing at least one reactive amino group and at least one reactive hydroxy group per molecule, and (vi) mixtures of (i) to (v); provided that when said post-treating reactant includes one or more of (iii), (iv) or (v), the reaction between (A) and (B) is conducted in the presence of sufficient chain-stopping or end-capping co-reactant (C) to ensure that the grafted and post-reacted product mixture is gel-free.
Abstract:
Nitrogen-containing functionalised polymers may be obtained by reacting olefinically-unsaturated polymers and N-substituted amido or imido compounds in the presence of an acid catalyst. The compounds may be useful as oil additives, for example, as dispersants, in lubricating or fuel oil compositions. C.sub.2 to C.sub.25 olefins may be reacted with N-substituted amido or imido compounds to obtain dihydrooxazine compounds, which may be useful as chemical intermediates.
Abstract:
This invention relates to compositions which are useful as additives in lubricants and fuels, and more particularly, to additives which are chlorine-free or contain only minor amounts of chlorine. More particularly, carboxylic compositions are described which are prepared by reacting a terpolymer derived from a mixture of monomers comprising ethylene, an alpha-olefin containing 3 to about 20 carbon atoms, and a non-conjugated polyene with an alpha,beta-monounsaturated dicarboxylic acid or reactive derivative thereof. These carboxylic compositions may be used in lubricating oil or fuel compositions or may be used to form carboxylic derivative compositions which are useful in lubricating oil and fuel compositions. Such useful carboxylic derivative compositions can be prepared by reacting at least one of the above-described carboxylic compositions with a reactant selected from the group consisting of (A) amines characterized by the presence within their structure of at least one H--N
Abstract:
The present invention is directed to a process for preparing a polymeric amide which comprises the steps of:(A) reacting a mixture of (i) functionalized hydrocarbon polymer containing ester functional groups comprising at least one member selected from the group consisting of substituted alkyl ester functional groups, the substituted alkyl moiety containing at least one electron withdrawing substituent group, and aryl ester functional groups, the hydrocarbon polymer having a number average molecular weight of at least about 500 prior to functionalization, and (ii) an amine having at least one reactive --NH.sub.2 moiety, for a time and under conditions sufficient to form amide groups; and(B) removing from the mixture during step (A) hydroxyl compound released from the ester functional groups in forming the amide groups.The polymeric amides so produced are useful as fuel additives (e.g., detergents) and lubricating oil additives (e.g., dispersants).
Abstract:
Gel-free dispersant additives for lubricating and fuel oil compositions comprise at least one adduct of (A) .alpha.-olefin homopolymer or interpolymer of 700 to 10,000 number average molecular weight, free radically grafted with an average of from about 0.5 to about 5 carboxylic acid producing moieties per polymer chain, and (B) at least one non-aromatic nucleophilic post-treating reactant selected from (i) amine compounds containing only a single reactive amino group per molecule, (ii) alcohol compounds containing only a single hydroxy group per molecule, (iii) polyamine compounds containing at least two reactive amino groups per molecule, (iv) polyol compounds containing at least two reactive hydroxy groups per molecule, (v) aminoalcohol compounds containing at least one reactive amino group and at least one reactive hydroxy group per molecule, and (vi) mixtures of (i) to (v); provided that when said post-treating reactant includes one or more of (iii), (iv) or (v), the reaction between (A) and (B) is conducted in the presence of sufficient chain-stopping or end-capping co-reactant (C) to ensure that the grafted and post-reacted product mixture is gel-free.
Abstract:
A fuel additive having the formula: ##STR1## wherein A.sub.1 is a thioether, a sulfoxide, a sulfone, a sulfonic acid, a sulfonamide, a nitrile, a carboxylic acid or ester, or a carboxamide; R.sub.1 and R.sub.2 are independently hydrogen, hydroxy, lower alkyl or lower alkoxy; R.sub.3 and R.sub.4 are independently hydrogen or lower alkyl; n is an integer from 0 to 100; and when n is 0 to 10, R.sub.5 is polyalkyl having an average molecular weight of 450 to 5,000; and when n is 5 to 100, R.sub.5 is hydrogen, alkyl, phenyl, aralkyl, alkaryl or an acyl group having the formula: ##STR2## wherein R.sub.6 is alkyl, phenyl, aralkyl or alkaryl; R.sub.7 and R.sub.8 are independently hydrogen, hydroxy, lower alkyl or lower alkoxy; A.sub.2 is a thioether, a sulfoxide, a sulfone, a sulfonic acid, a sulfonamide, a nitrile, a carboxylic acid or ester, or a carboxamide; and x and y are independently integers from 0 to 10; with the proviso that when n and x are both 0, then A.sub.1 may not be a carboxylic acid or ester, or a carboxamide.
Abstract:
An oil soluble nitrogen containing grafted degraded ethylene copolymers useful as multifunctional viscosity index improvers or modifiers, such as VI improver-dispersant additives. The nitrogen containing grafted degraded ethylene copolymers are grafted with an ethylenically unsaturated carboxylic acid grafting material and the grafted degraded ethylene copolymers are then reacted with at least one polyamine containing one primary amine group and at least one or more secondary amine groups.
Abstract:
Block and random straight chain and star-branched liquid copolymers of two different conjugated dienes, the residual ethylenic unsaturation of the polymerized units of one of which, e.g. isoprene, is less readily hydrogenated than that of the other diene, e.g., butadiene. In the case of block copolymers, the terminal blocks of a straight chain copolymer or the blocks of the free ends of the branches of a star-branched copolymer are composed of the less readily hydrogenated diene polymer while the more readily hydrogenated diene polymer is in the form of central blocks of a straight chain copolymer or interior blocks of the branches of a star-branched copolymer. These copolymers may be selectively hydrogenated so that substantially all of the residual ethylenic unsaturation of the more readily hydrogenated polymerized diene units are hydrogenated while enough residual ethylenic unsaturation of the less readily hydrogenated polymerized diene units remains unhydrogenated to provide sufficient sites for subsequent vulcanization or chemical modification. The combination of elastomeric properties and oxidative stability possessed by the polymers of this invention makes them suitable for many and uses such as sealants, caulks and adhesives.