Abstract:
A fluorescence microscope includes a nearly monochromatic light source, a Brewster angle wedge, and an optical system for irradiating a sample with a light beam from the light source and directing fluorescence light from said sample onto the Brewster angle wedge. Collection optics are provided for focusing a hyper-spectral, wide angle and dark field image of the sample from the Brewster angle wedge onto recording optics.
Abstract:
The present invention provides a small spectroscope that has a short response time. A spectroscope according to one embodiment of the present invention includes: a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means.
Abstract:
A device to illuminate a object, to excite its fluorescence light emission, and detect the emitted fluorescence spectrum, comprising: at least one illumination system (13), adapted to receive light from a light source (11), to select at least one wavelength bands of light spectrum of the source (11), to illuminate a object (15) with light filtered in that way (14); and a detection system (17), adapted to detect fluorescence light (16) emitted by the object (15), to select at least one wavelength bands of fluorescence, light spectrum (16), to record the spectrum of the filtered light; characterized in that said illumination system (13) comprises: at least one first dispersive element (41), at least one focusing optics (43), at least one spatial fitter of excitation (44), at least one collimating optics (45) and at least one second dispersive element (47), wherein said detection system (17) comprises: at least one dispersive element (81), at least one focusing optics (83), at least one spatial filter of detection (84), at least one imaging optics (85) and at least one light detector (87).
Abstract:
A light emission device capable of holding a uniform color in various environments is provided. A light source control device has a light detection device for detecting emission brightness of light sources that emit different colors and controlling emission brightness of at least one light source of the light sources based on the detection result of the light detection device. A through-hole is formed in a reflection member for reflecting light emitted from the light source, and the reflection is in a predetermined direction. The light detection device is provided across the reflection member from the light source, and the light propagation member is provided at the through-hole.
Abstract:
Apparatus for registering the spectral signature of a dynamic source event include an imaging-sensor array configured to register electromagnetic energy over a predetermined range of electromagnetic wavelengths and an optical system configured for imaging onto the imaging-sensor array a dispersion pattern of electromagnetic energy emitted from a source event external to the optical system. The optical system includes (i) a focusing element and (ii) a selected set of optical dispersion apparatus. Among the optical dispersion apparatus are at least a first optically dispersive element that disperses a first selected set of wavelengths within the sensitivity range of the imaging-sensor array and at least a second optically dispersive element that disperses a second selected set of wavelengths within the sensitivity range of the imaging-sensor array such that wavelengths emitted from a source event that are within the first and second selected sets of wavelengths impinge simultaneously upon the imaging-sensor array along, respectively, a first extrapolated axis and a second extrapolated axis that is non-parallel to the first extrapolated axis.
Abstract:
For spectrally filtering at least one input beam, a first reflective element is configured to tilt to multiple tilt orientations that each corresponds to a different angle of propagation of at least one input beam. One or more optical elements are configured to change at least some of the relative angles of propagation of the input beam for different tilt orientations of the first reflective element. A spectrally dispersive element is configured to receive the input beam at a location at which the central ray of the input beam is incident at different points on the spectrally dispersive element for each of the tilt orientations, and configured to disperse spectral components of the input beam at different respective angles in a spectral plane. The first reflective element is configured to tilt to select at least one and fewer than all of the dispersed spectral components to be directed to a selected output path.
Abstract:
An exemplary embodiment of apparatus and method to measure and filter the spectrum of electro-magnetic radiation using multiple dispersive elements, such as diffraction gratings or VIPA etalons, concatenated in a cross-axis orthogonal arrangement can be provided. For example, it is possible to receive at least one first electro-magnetic radiation and generate at least one second electro-magnetic radiation using at least one first spectral separating arrangement. A first spectrum of the second electro-magnetic radiation can be dispersed along at least one first dispersive axis with respect to a propagation direction of the second electro-magnetic radiation. In addition, it is possible to, using at least one second arrangement, receive the second electro-magnetic radiation and produce at least one third electromagnetic radiation having a second spectrum dispersed along at least one second dispersive axis with respect to a propagation direction of the third electromagnetic radiation. The orientations of the respective first and second dispersive axes can be different from one another. The first and/or second dispersive arrangements can be VIPA etalon arrangements.
Abstract:
This application describes a spectrometer that includes a set of collimating optics to collimate received EMR to produce a collimated EMR. The spectrometer also includes a first dispersive optical element for dispersing the collimated EMR and a second dispersive optical element spaced apart from the first dispersive optical element to produce further dispersed EMR. The first dispersive optical element and the second dispersive optical element cooperate to disperse received EMR into a plurality of even frequency spaced EMR spectra. The spectrometer also includes a detector positioned to receive the EMR after passing though an optical path that includes the set of collimating optics, the first dispersive optical element, the second dispersive optical element, and a set of focusing optics.
Abstract:
An illumination subsystem configured to provide illumination for a measurement system includes first and second light sources configured to generate light for measurements in different wavelength regimes. The illumination subsystem also includes a TIR prism configured to be moved into and out of an optical path from the first and second light sources to the measurement system. If the TIR prism is positioned out of the optical path, light from only the first light source is directed along the optical path. If the TIR prism is positioned in the optical path, light from only the second light source is directed along the optical path. Various measurement systems are also provided. One measurement system includes an optical subsystem configured to perform measurements of a specimen using light in different wavelength regimes directed along a common optical path. The different wavelength regimes include vacuum ultraviolet, ultraviolet, visible, and near infrared wavelength regimes.