Abstract:
A TeraMOS sensor based on a CMOS-SOI-MEMS transistor, thermally isolated by the MEMS post-processing, designed specifically for the detection of THz radiation which may be directly integrated with the CMOS-SOI readout circuitry, in order to achieve a breakthrough in performance and cost. The TeraMOS sensor provides a low-cost, high performance THz passive or active imaging system (roughly in the range of 0.5-1.5 THz) by combining several leading technologies: Complementary Metal Oxide Semiconductor (CMOS)-Silicon on Insulator (SOI), Micro Electro Mechanical Systems (MEMS) and photonics. An array of TeraMOS sensors, integrated with readout circuitry and driving and supporting circuitry provides a monolithic focal plane array or imager. This imager is designed in a commercial CMOS-SOI Fab and the MEMS micromachining is provided as post-processing step in order to reduce cost. Thus the CMOS transistors and technology provide the sensors as well as the signal processing and additional readout circuitry both in the pixels as well as around the sensor array.
Abstract:
In one embodiment, a MEMS sensor includes a mirror and an absorber spaced apart from the mirror, the absorber including a plurality of spaced apart conductive legs defining a tortuous path across an area directly above the mirror.
Abstract:
An infrared detection sensor array according to the present invention is characterized by being provided with a substrate, at least one hole that passes through the substrate, a first infrared detection element provided to one side of the substrate and a second infrared detection element provided on the other side of the substrate so as to at least partially cover the hole.
Abstract:
Sensors for detecting IR radiation, UV radiation, X-Rays, light, gas, and chemicals. The sensors herein incorporate freestanding carbon nanostructures, such as single-walled carbon nanotubes (“SWCNT”), atomically thin carbon sheets having a thickness of about between 1 atom and about 5 atoms (“graphene”), and combinations thereof. The freestanding carbon nanostructures are suspended above a substrate by a plurality of conductors, each conductor electrically connected to the carbon nanostructure. In one method of manufacture, a resonance chamber is formed under the carbon nanostructure by etching of the substrate, yielding a sensor wherein the resonance chamber is bounded by at least the substrate and the carbon nanostructure.
Abstract:
The bolometer-type THz wave detector according to the present invention has a thermal isolation structure in which a temperature detecting portion including a bolometer thin film connected to electrical wirings is supported in a state of being raised from the substrate by a supporting portion including the electrical wirings connected to a Read-out integrated circuit formed in a substrate, and the detector comprises a reflective film formed on the substrate, an absorbing film formed on the front surface or back surface or at an inner position in the temperature detecting portion , whereby an optical resonant structure is formed by the reflective film and the absorbing film, and a dielectric film formed on the reflective film. The dielectric film thickness f is set so that air gap between an upper surface of the dielectric film and a lower surface of the temperature detecting portion is smaller than 8 μm.
Abstract:
While conductive adhesives 60 are provided between element electrodes of a pyroelectric element 10 and board electrodes of an installation board 20, the conductive adhesives 60 are hardened to connect between the element electrodes of the pyroelectric element 10 and the board electrodes of the installation board 20. The conductive adhesives 60 include epoxy resin and, after hardened, have 4 B to 7 H, both inclusive, of pencil hardness as their hardness on JIS K 5600-5-4 (ISO 15184) standard basis. If the pyroelectric element 10 is broken down, the hardened conductive adhesives 60 are impacted or are cut by using a cutter to take off the pyroelectric element 10 from the installation board 20.
Abstract translation:虽然导电粘合剂60设置在热电元件10的元件电极和安装板20的板电极之间,导电粘合剂60被硬化以在热电元件10的元件电极和安装板20的基板电极之间连接。 导电粘合剂60包括环氧树脂,并且在硬化之后,具有铅笔硬度的4 B至7 H,其硬度为JIS K 5600-5-4(ISO 15184)标准的硬度。 如果热电元件10断裂,则通过使用切割器将硬化的导电粘合剂60冲击或切割,以从安装板20中取出热电元件10。
Abstract:
A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.
Abstract:
Embodiments of the present invention provide systems and methods for depositing materials on either side of a freestanding film using selectively thermally-assisted chemical vapor deposition (STA-CVD), and structures formed using same. A freestanding film, which is suspended over a cavity defined in a substrate, is exposed to a fluidic CVD precursor that reacts to form a solid material when exposed to heat. The freestanding film is then selectively heated in the presence of the precursor. The CVD precursor preferentially deposits on the surface(s) of the freestanding film.
Abstract:
Embodiments of the invention are directed to integrated resonance detectors and arrays of integrated resonance detectors and to methods for making and using the integrated resonance detectors and arrays. Integrated resonance detectors comprise a substrate, a conducting mirror layer, an active layer, and a patterned conducting layer. Electromagnetic radiation is detected by transducing a specific resonance-induced field enhancement in the active layer to a detection current that is proportional to the incident irradiance.
Abstract:
A post-supported bolometer pixel and a process for manufacturing it comprising the steps of depositing a sacrificial layer over a substrate with readout integrated circuit pads that connect to the integrated circuit; forming vias through the sacrificial layer to the metal pads connecting to the readout integrated circuit; filling the vias with metal and polishing said metal to the surface of the sacrificial layer; forming microbolometer pixel layers over the filled vias and sacrificial layer; and removing the sacrificial layer to leave a post-supported pixel.